Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Nonlinear Dynamical Responses of Rotary Cylindrical Shells with Internal Resonance

Nonlinear Dynamical Responses of Rotary Cylindrical Shells with Internal Resonance Abstract The nonlinear forced vibration response of a thin, elastic, rotary cylindrical shell to a harmonic excitation is investigated in this study. Nonlinearities due to the large-amplitude shell motion are considered by using Donnell’s nonlinear shallow-shell theory, with consideration of the effect of viscous structural damping. Different from the conventional Donnell’s nonlinear shallow-shell equations, an improved nonlinear model without employing the Airy stress function is utilized to study the nonlinear dynamics of thin shells. The system is discretized using the Galerkin method, while a model involving two degrees of freedom and allowing for the traveling wave response of the shell is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the two-degree-of-freedom system. In addition, the stability of steady-state solutions is analyzed in detail. Finally, results are given for exploring the effects of different parameters on the nonlinear dynamic response with internal resonance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Acta Mechanica Solida Sinica" Springer Journals

Nonlinear Dynamical Responses of Rotary Cylindrical Shells with Internal Resonance

Loading next page...
 
/lp/springer-journals/nonlinear-dynamical-responses-of-rotary-cylindrical-shells-with-WApkX5tumu
Publisher
Springer Journals
Copyright
2019 The Chinese Society of Theoretical and Applied Mechanics
ISSN
0894-9166
eISSN
1860-2134
DOI
10.1007/s10338-019-00080-z
Publisher site
See Article on Publisher Site

Abstract

Abstract The nonlinear forced vibration response of a thin, elastic, rotary cylindrical shell to a harmonic excitation is investigated in this study. Nonlinearities due to the large-amplitude shell motion are considered by using Donnell’s nonlinear shallow-shell theory, with consideration of the effect of viscous structural damping. Different from the conventional Donnell’s nonlinear shallow-shell equations, an improved nonlinear model without employing the Airy stress function is utilized to study the nonlinear dynamics of thin shells. The system is discretized using the Galerkin method, while a model involving two degrees of freedom and allowing for the traveling wave response of the shell is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the two-degree-of-freedom system. In addition, the stability of steady-state solutions is analyzed in detail. Finally, results are given for exploring the effects of different parameters on the nonlinear dynamic response with internal resonance.

Journal

"Acta Mechanica Solida Sinica"Springer Journals

Published: Apr 1, 2019

Keywords: Theoretical and Applied Mechanics; Surfaces and Interfaces, Thin Films; Classical Mechanics

References