Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching

Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and... Purpose The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. Methods A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Results Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Computer Assisted Radiology and Surgery Springer Journals

Loading next page...
 
/lp/springer-journals/non-rigid-registration-of-3d-ultrasound-for-neurosurgery-using-Tdos6zSFNR

References (68)

Publisher
Springer Journals
Copyright
Copyright © 2018 by CARS
Subject
Medicine & Public Health; Imaging / Radiology; Surgery; Health Informatics; Computer Imaging, Vision, Pattern Recognition and Graphics; Computer Science, general
ISSN
1861-6410
eISSN
1861-6429
DOI
10.1007/s11548-018-1786-7
pmid
29869321
Publisher site
See Article on Publisher Site

Abstract

Purpose The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. Methods A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Results Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration.

Journal

International Journal of Computer Assisted Radiology and SurgerySpringer Journals

Published: Jun 4, 2018

There are no references for this article.