Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

New Features for Neuron Classification

New Features for Neuron Classification This paper addresses the problem of obtaining new neuron features capable of improving results of neuron classification. Most studies on neuron classification using morphological features have been based on Euclidean geometry. Here three one-dimensional (1D) time series are derived from the three-dimensional (3D) structure of neuron instead, and afterwards a spatial time series is finally constructed from which the features are calculated. Digitally reconstructed neurons were separated into control and pathological sets, which are related to three categories of alterations caused by epilepsy, Alzheimer’s disease (long and local projections), and ischemia. These neuron sets were then subjected to supervised classification and the results were compared considering three sets of features: morphological, features obtained from the time series and a combination of both. The best results were obtained using features from the time series, which outperformed the classification using only morphological features, showing higher correct classification rates with differences of 5.15, 3.75, 5.33% for epilepsy and Alzheimer’s disease (long and local projections) respectively. The morphological features were better for the ischemia set with a difference of 3.05%. Features like variance, Spearman auto-correlation, partial auto-correlation, mutual information, local minima and maxima, all related to the time series, exhibited the best performance. Also we compared different evaluators, among which ReliefF was the best ranked. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

Loading next page...
 
/lp/springer-journals/new-features-for-neuron-classification-q8cW00mw5B
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Neurosciences; Bioinformatics; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Neurology
ISSN
1539-2791
eISSN
1559-0089
DOI
10.1007/s12021-018-9374-0
Publisher site
See Article on Publisher Site

Abstract

This paper addresses the problem of obtaining new neuron features capable of improving results of neuron classification. Most studies on neuron classification using morphological features have been based on Euclidean geometry. Here three one-dimensional (1D) time series are derived from the three-dimensional (3D) structure of neuron instead, and afterwards a spatial time series is finally constructed from which the features are calculated. Digitally reconstructed neurons were separated into control and pathological sets, which are related to three categories of alterations caused by epilepsy, Alzheimer’s disease (long and local projections), and ischemia. These neuron sets were then subjected to supervised classification and the results were compared considering three sets of features: morphological, features obtained from the time series and a combination of both. The best results were obtained using features from the time series, which outperformed the classification using only morphological features, showing higher correct classification rates with differences of 5.15, 3.75, 5.33% for epilepsy and Alzheimer’s disease (long and local projections) respectively. The morphological features were better for the ischemia set with a difference of 3.05%. Features like variance, Spearman auto-correlation, partial auto-correlation, mutual information, local minima and maxima, all related to the time series, exhibited the best performance. Also we compared different evaluators, among which ReliefF was the best ranked.

Journal

NeuroinformaticsSpringer Journals

Published: Apr 28, 2018

References