Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Multi-timescale variation of East Asian winter monsoon intensity and its relation with sea surface temperature during last millennium based on ECHO-G simulation

Multi-timescale variation of East Asian winter monsoon intensity and its relation with sea... Abstract Based on the simulation results derived from ECHO-G global coupled climate model, several East Asian winter monsoon (EAWM) indices are compared in order to choose the most suitable one for signaling the intensity of winter monsoon in the last millennium. The index I_shi, which is defined with normalized sea level pressure difference between sea and land in mid and low latitudes, is selected to describe the winter monsoon intensity variation owing to its better capability for reflecting the variation of winter monsoon subsystems, such as the continental high pressure, Aleutian low, East Asian major trough, westerly jet stream, and surface air temperature than the other indices examined. Wavelet analysis on index I_shi shows that the EAWM intensity is characterized by multi-timescale variation with inter-annual, decadal, inter-decadal and inter-centennial oscillations on the background of a slight descending trend. Correlation analysis between the EAWM index and sea surface temperature (SST) at various timescales reveals that the SST in mid-latitudes might provide the background of the EAWM strength changes above decadal timescales, and a negative-feedback process lasting for about two years is found between the EAWM intensity and the SST in the eastern equatorial Pacific. According to the correlation, the El Nino occurrence in the second-half of the year leads to weaker EAWM than normal in the following winter and the weakened EAWM corresponds to lower SST in eastern equatorial Pacific after about half a year, which will then strengthen the EAWM intensity in the next winter. It is a stable feedback process and its mechanism is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Asia-Pacific Journal of Atmospheric Sciences" Springer Journals

Multi-timescale variation of East Asian winter monsoon intensity and its relation with sea surface temperature during last millennium based on ECHO-G simulation

Loading next page...
 
/lp/springer-journals/multi-timescale-variation-of-east-asian-winter-monsoon-intensity-and-yuAqfcdNGC

References (50)

Publisher
Springer Journals
Copyright
2011 Korean Meteorological Society and Springer Netherlands
ISSN
1976-7633
eISSN
1976-7951
DOI
10.1007/s13143-011-0033-8
Publisher site
See Article on Publisher Site

Abstract

Abstract Based on the simulation results derived from ECHO-G global coupled climate model, several East Asian winter monsoon (EAWM) indices are compared in order to choose the most suitable one for signaling the intensity of winter monsoon in the last millennium. The index I_shi, which is defined with normalized sea level pressure difference between sea and land in mid and low latitudes, is selected to describe the winter monsoon intensity variation owing to its better capability for reflecting the variation of winter monsoon subsystems, such as the continental high pressure, Aleutian low, East Asian major trough, westerly jet stream, and surface air temperature than the other indices examined. Wavelet analysis on index I_shi shows that the EAWM intensity is characterized by multi-timescale variation with inter-annual, decadal, inter-decadal and inter-centennial oscillations on the background of a slight descending trend. Correlation analysis between the EAWM index and sea surface temperature (SST) at various timescales reveals that the SST in mid-latitudes might provide the background of the EAWM strength changes above decadal timescales, and a negative-feedback process lasting for about two years is found between the EAWM intensity and the SST in the eastern equatorial Pacific. According to the correlation, the El Nino occurrence in the second-half of the year leads to weaker EAWM than normal in the following winter and the weakened EAWM corresponds to lower SST in eastern equatorial Pacific after about half a year, which will then strengthen the EAWM intensity in the next winter. It is a stable feedback process and its mechanism is discussed.

Journal

"Asia-Pacific Journal of Atmospheric Sciences"Springer Journals

Published: Nov 1, 2011

There are no references for this article.