Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG Data

Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG... Identification of informative signatures from electrophysiological signals is important for understanding brain developmental patterns, where techniques such as magnetoencephalography (MEG) are particularly useful. However, less attention has been given to fully utilizing the multidimensional nature of MEG data for extracting components that describe these patterns. Tensor factorizations of MEG yield components that encapsulate the data’s multidimensional nature, providing parsimonious models identifying latent brain patterns for meaningful summarization of neural processes. To address the need for meaningful MEG signatures for studies of pediatric cohorts, we propose a tensor-based approach for extracting developmental signatures of multi-subject MEG data. We employ the canonical polyadic (CP) decomposition for estimating latent spatiotemporal components of the data, and use these components for group level statistical inference. Using CP decomposition along with hierarchical clustering, we were able to extract typical early and late latency event-related field (ERF) components that were discriminative of high and low performance groups (p<0.05\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p < 0.05$$\end{document}) and significantly correlated with major cognitive domains such as attention, episodic memory, executive function, and language comprehension. We demonstrate that tensor-based group level statistical inference of MEG can produce signatures descriptive of the multidimensional MEG data. Furthermore, these features can be used to study group differences in brain patterns and cognitive function of healthy children. We provide an effective tool that may be useful for assessing child developmental status and brain function directly from electrophysiological measurements and facilitate the prospective assessment of cognitive processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

Multi-Subject Analysis for Brain Developmental Patterns Discovery via Tensor Decomposition of MEG Data

Loading next page...
 
/lp/springer-journals/multi-subject-analysis-for-brain-developmental-patterns-discovery-via-nrhw4FDJcV
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
1539-2791
eISSN
1559-0089
DOI
10.1007/s12021-022-09599-y
Publisher site
See Article on Publisher Site

Abstract

Identification of informative signatures from electrophysiological signals is important for understanding brain developmental patterns, where techniques such as magnetoencephalography (MEG) are particularly useful. However, less attention has been given to fully utilizing the multidimensional nature of MEG data for extracting components that describe these patterns. Tensor factorizations of MEG yield components that encapsulate the data’s multidimensional nature, providing parsimonious models identifying latent brain patterns for meaningful summarization of neural processes. To address the need for meaningful MEG signatures for studies of pediatric cohorts, we propose a tensor-based approach for extracting developmental signatures of multi-subject MEG data. We employ the canonical polyadic (CP) decomposition for estimating latent spatiotemporal components of the data, and use these components for group level statistical inference. Using CP decomposition along with hierarchical clustering, we were able to extract typical early and late latency event-related field (ERF) components that were discriminative of high and low performance groups (p<0.05\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p < 0.05$$\end{document}) and significantly correlated with major cognitive domains such as attention, episodic memory, executive function, and language comprehension. We demonstrate that tensor-based group level statistical inference of MEG can produce signatures descriptive of the multidimensional MEG data. Furthermore, these features can be used to study group differences in brain patterns and cognitive function of healthy children. We provide an effective tool that may be useful for assessing child developmental status and brain function directly from electrophysiological measurements and facilitate the prospective assessment of cognitive processes.

Journal

NeuroinformaticsSpringer Journals

Published: Aug 24, 2022

Keywords: Tensor decomposition; Canonical polyadic decomposition; MEG; Multi-subject analysis; Cognitive function; Developmental neuroscience

References