Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Motion visualization and estimation for flapping wing systems

Motion visualization and estimation for flapping wing systems Abstract Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Acta Mechanica Sinica" Springer Journals

Motion visualization and estimation for flapping wing systems

Loading next page...
 
/lp/springer-journals/motion-visualization-and-estimation-for-flapping-wing-systems-c3EjnHvgtm

References (39)

Publisher
Springer Journals
Copyright
2017 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg
ISSN
0567-7718
eISSN
1614-3116
DOI
10.1007/s10409-017-0638-y
Publisher site
See Article on Publisher Site

Abstract

Abstract Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.

Journal

"Acta Mechanica Sinica"Springer Journals

Published: Apr 1, 2017

There are no references for this article.