Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Molecular and Cytological Characterization of Centromeric Retrotransposons in a Wild Relative of Rice, Oryza granulata

Molecular and Cytological Characterization of Centromeric Retrotransposons in a Wild Relative of... Centromeric retrotransposons (CRs) are important component of the functional centromeres of rice chromosomes. To track the evolution of the CR elements in genus Oryza, we sequenced the orthologous region of the rice centromere 8 (Cen8) in O. granulata and analyzed transposons in this region. A total of 12 bacterial artificial chromosomes (BACs) that span the centromeric region in O. granulata were sequenced. The O. granulate centromeric sequences are composed of as much as 85% of transposons, higher than any other reported eukaryotic centromeres. Ten novel LTR retrotransposon families were identified but a single retrotransposon, Gran3, constitutes nearly 43% of the centromeric sequences. Integration times of complete LTR retrotransposons indicate that the centromeric region had a massive insertion of LTR retrotransposons within 4.5 million year (Myr), which indicates a recent expansion of the centromere in O. granulata after the radiation of the Oryza genus. Two retrotransposon families, OGRetro7 and OGRetro9, show sequence similarity with the canonical CRs from rice and maize. Both OGRetro7 and OGRetro9 are highly concentrated in the centromeres of O. granulata chromosomes. Furthermore, strong hybridization signals were detected in all Oryza species but in O. brachyantha with the OGRetro7 and OGRetro9 probes. Characterization of the centromeric retrotransposons in O. granulata confirms the conservation of the CRs in the Oryza genus and provides a resource for comparative analysis of centromeres and centromere evolution among the Oryza genus and other genomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tropical Plant Biology Springer Journals

Molecular and Cytological Characterization of Centromeric Retrotransposons in a Wild Relative of Rice, Oryza granulata

Loading next page...
 
/lp/springer-journals/molecular-and-cytological-characterization-of-centromeric-yFBXcUC0WT
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Plant Genetics & Genomics; Plant Sciences; Plant Ecology; Transgenics; Plant Breeding/Biotechnology
ISSN
1935-9756
eISSN
1935-9764
DOI
10.1007/s12042-011-9083-4
Publisher site
See Article on Publisher Site

Abstract

Centromeric retrotransposons (CRs) are important component of the functional centromeres of rice chromosomes. To track the evolution of the CR elements in genus Oryza, we sequenced the orthologous region of the rice centromere 8 (Cen8) in O. granulata and analyzed transposons in this region. A total of 12 bacterial artificial chromosomes (BACs) that span the centromeric region in O. granulata were sequenced. The O. granulate centromeric sequences are composed of as much as 85% of transposons, higher than any other reported eukaryotic centromeres. Ten novel LTR retrotransposon families were identified but a single retrotransposon, Gran3, constitutes nearly 43% of the centromeric sequences. Integration times of complete LTR retrotransposons indicate that the centromeric region had a massive insertion of LTR retrotransposons within 4.5 million year (Myr), which indicates a recent expansion of the centromere in O. granulata after the radiation of the Oryza genus. Two retrotransposon families, OGRetro7 and OGRetro9, show sequence similarity with the canonical CRs from rice and maize. Both OGRetro7 and OGRetro9 are highly concentrated in the centromeres of O. granulata chromosomes. Furthermore, strong hybridization signals were detected in all Oryza species but in O. brachyantha with the OGRetro7 and OGRetro9 probes. Characterization of the centromeric retrotransposons in O. granulata confirms the conservation of the CRs in the Oryza genus and provides a resource for comparative analysis of centromeres and centromere evolution among the Oryza genus and other genomes.

Journal

Tropical Plant BiologySpringer Journals

Published: Nov 6, 2011

References