Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Modeling of fluid flow in a biological reactor of rotational type

Modeling of fluid flow in a biological reactor of rotational type Abstract The technology using for the replacement of damaged tissues the own cells of the patient, which are placed in a three-dimensional frame - scaffold, is promising for solving the problem of the bone tissue regeneration. A new biological reactor of the rotational type, in which the scaffold tissue rotates in a medium for cultivating the cells, was designed for the development of this technique. A numerical algorithm based on the ANSYS program was developed, which enables one to estimate in a new bioreactor the level of the mechanical load on the cells, which affects their pro-perties. The algorithm enables the computation of the values of the shear stress and static pressure acting on the scaf-fold surface. The computations have shown that the necessary shear stress is reached in the proposed rotational biore-actor on the outer side of the inner cylinder (0.002−0.1 Pa) in the range of rotation frequencies 0.083 < f < 0.233 Hz. At the same time, computational results have revealed the presence of an inhomogeneity in the mechanical action distribution along the scaffold tissue, which is due to the appearance of two Taylor vortices with opposite rotation directions in the gap between the cylinders. The experiments on the flow field visualization inside the rotational bio-logical reactor have shown a qualitative agreement of the flow character with computational results. The proposed numerical algorithm may simulate with sufficient accuracy the fluid flow in a real system. The obtained dependencies can be used in practice for creating an optimal microenvironment of the cells cultivated in the biological reactor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Thermophysics and Aeromechanics Springer Journals

Modeling of fluid flow in a biological reactor of rotational type

Loading next page...
 
/lp/springer-journals/modeling-of-fluid-flow-in-a-biological-reactor-of-rotational-type-cITvCZb5HX
Publisher
Springer Journals
Copyright
2018 Pleiades Publishing, Ltd.
ISSN
0869-8643
eISSN
1531-8699
DOI
10.1134/S0869864318020063
Publisher site
See Article on Publisher Site

Abstract

Abstract The technology using for the replacement of damaged tissues the own cells of the patient, which are placed in a three-dimensional frame - scaffold, is promising for solving the problem of the bone tissue regeneration. A new biological reactor of the rotational type, in which the scaffold tissue rotates in a medium for cultivating the cells, was designed for the development of this technique. A numerical algorithm based on the ANSYS program was developed, which enables one to estimate in a new bioreactor the level of the mechanical load on the cells, which affects their pro-perties. The algorithm enables the computation of the values of the shear stress and static pressure acting on the scaf-fold surface. The computations have shown that the necessary shear stress is reached in the proposed rotational biore-actor on the outer side of the inner cylinder (0.002−0.1 Pa) in the range of rotation frequencies 0.083 < f < 0.233 Hz. At the same time, computational results have revealed the presence of an inhomogeneity in the mechanical action distribution along the scaffold tissue, which is due to the appearance of two Taylor vortices with opposite rotation directions in the gap between the cylinders. The experiments on the flow field visualization inside the rotational bio-logical reactor have shown a qualitative agreement of the flow character with computational results. The proposed numerical algorithm may simulate with sufficient accuracy the fluid flow in a real system. The obtained dependencies can be used in practice for creating an optimal microenvironment of the cells cultivated in the biological reactor.

Journal

Thermophysics and AeromechanicsSpringer Journals

Published: Mar 1, 2018

References