Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Model-predictive asset guarding by team of autonomous surface vehicles in environment with civilian boats

Model-predictive asset guarding by team of autonomous surface vehicles in environment with... In this paper, we present a contract-based, decentralized planning approach for a team of autonomous unmanned surface vehicles (USV) to patrol and guard an asset in an environment with hostile boats and civilian traffic. The USVs in the team have to cooperatively deal with the uncertainty about which boats pose an actual threat and distribute themselves around the asset to optimize their guarding opportunities. The developed planner incorporates a contract-based algorithm for allocating tasks to the USVs through forward simulating the mission and assigning estimated utilities to candidate task allocation plans. The task allocation process uses a form of marginal cost-based contracting that allows decentralized, cooperative task negotiation among neighboring agents. The task allocation plans are realized through a corresponding set of low-level behaviors. In this paper, we demonstrate the planner using two mission scenarios. However, the planner is general enough to be used for a variety of scenarios with mission-specific tasks and behaviors. We provide detailed analysis of simulation results and discuss the impact of communication interruptions, unreliable sensor data, and simulation inaccuracies on the performance of the planner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Model-predictive asset guarding by team of autonomous surface vehicles in environment with civilian boats

Loading next page...
 
/lp/springer-journals/model-predictive-asset-guarding-by-team-of-autonomous-surface-vehicles-iCcLDNWide

References (9)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1007/s10514-014-9409-9
Publisher site
See Article on Publisher Site

Abstract

In this paper, we present a contract-based, decentralized planning approach for a team of autonomous unmanned surface vehicles (USV) to patrol and guard an asset in an environment with hostile boats and civilian traffic. The USVs in the team have to cooperatively deal with the uncertainty about which boats pose an actual threat and distribute themselves around the asset to optimize their guarding opportunities. The developed planner incorporates a contract-based algorithm for allocating tasks to the USVs through forward simulating the mission and assigning estimated utilities to candidate task allocation plans. The task allocation process uses a form of marginal cost-based contracting that allows decentralized, cooperative task negotiation among neighboring agents. The task allocation plans are realized through a corresponding set of low-level behaviors. In this paper, we demonstrate the planner using two mission scenarios. However, the planner is general enough to be used for a variety of scenarios with mission-specific tasks and behaviors. We provide detailed analysis of simulation results and discuss the impact of communication interruptions, unreliable sensor data, and simulation inaccuracies on the performance of the planner.

Journal

Autonomous RobotsSpringer Journals

Published: Aug 6, 2014

There are no references for this article.