Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Methods of Laser, Non-Linear, and Fiber Optics in Studying Fundamental Problems of Astrophysics

Methods of Laser, Non-Linear, and Fiber Optics in Studying Fundamental Problems of Astrophysics Precise measurements of Doppler shifts of lines in stellar spectra allowing the radial velocity to be measured are an important field of astrophysical studies. A remarkable feature of the Doppler spectroscopy is the possibility to reliably measure quite small variations of the radial velocities (its acceleration, in fact) during long periods of time. Influence of a planet on a star is an example of such a variation. Under the influence of a planet rotating around a star, the latter demonstrates periodic motion manifested in the Doppler shift of the stellar spectrum. Precise measurements of this shift made it possible to indirectly discover planets outside the Solar system (exoplanets). Along with this, searching for Earth-type exoplanets within the habitable zone is an important challenge. For this purpose, accuracy of spectral measurements has to allow one to determine radial velocity variations at the level of centimeters per second during the timespans of about a year. Suchmeasurements on the periods of 10–15 years also would serve as a directmethod for determination of assumed acceleration of the Universe expansion. However, the required accuracy of spectroscopic measurements for this exceeds the possibilities of the traditional spectroscopy (an iodine cell, spectral lamps). Methods of radical improvement of possibilities of astronomical Doppler spectroscopy allowing one to attain the required measurement accuracy of Doppler shifts are considered. The issue of precise calibration can be solved through creating a system of a laser optical frequency generator of an exceptionally high accuracy and stability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Astrophysical Bulletin Springer Journals

Methods of Laser, Non-Linear, and Fiber Optics in Studying Fundamental Problems of Astrophysics

Astrophysical Bulletin , Volume 73 (2) – May 29, 2018

Loading next page...
 
/lp/springer-journals/methods-of-laser-non-linear-and-fiber-optics-in-studying-fundamental-7pIdSdOYiM

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Physics; Astronomy, Astrophysics and Cosmology
ISSN
1990-3413
eISSN
1990-3421
DOI
10.1134/S1990341318020116
Publisher site
See Article on Publisher Site

Abstract

Precise measurements of Doppler shifts of lines in stellar spectra allowing the radial velocity to be measured are an important field of astrophysical studies. A remarkable feature of the Doppler spectroscopy is the possibility to reliably measure quite small variations of the radial velocities (its acceleration, in fact) during long periods of time. Influence of a planet on a star is an example of such a variation. Under the influence of a planet rotating around a star, the latter demonstrates periodic motion manifested in the Doppler shift of the stellar spectrum. Precise measurements of this shift made it possible to indirectly discover planets outside the Solar system (exoplanets). Along with this, searching for Earth-type exoplanets within the habitable zone is an important challenge. For this purpose, accuracy of spectral measurements has to allow one to determine radial velocity variations at the level of centimeters per second during the timespans of about a year. Suchmeasurements on the periods of 10–15 years also would serve as a directmethod for determination of assumed acceleration of the Universe expansion. However, the required accuracy of spectroscopic measurements for this exceeds the possibilities of the traditional spectroscopy (an iodine cell, spectral lamps). Methods of radical improvement of possibilities of astronomical Doppler spectroscopy allowing one to attain the required measurement accuracy of Doppler shifts are considered. The issue of precise calibration can be solved through creating a system of a laser optical frequency generator of an exceptionally high accuracy and stability.

Journal

Astrophysical BulletinSpringer Journals

Published: May 29, 2018

There are no references for this article.