Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Managing Cardiovascular Risk in Lysosomal Acid Lipase Deficiency

Managing Cardiovascular Risk in Lysosomal Acid Lipase Deficiency Lysosomal acid lipase deficiency (LAL-D) is a rare, life-threatening, autosomal recessive, lysosomal storage disease caused by mutations in the LIPA gene, which encodes for lysosomal acid lipase (LAL). This enzyme is necessary for the hydrolysis of cholesteryl ester and triglyceride in lysosomes. Deficient LAL activity causes accumulation of these lipids in lysosomes and a marked decrease in the cytoplasmic free cholesterol concentration, leading to dysfunctional cholesterol homeostasis. The accumulation of neutral lipid occurs predominantly in liver, spleen, and macrophages throughout the body, and the aberrant cholesterol homeostasis causes a marked dyslipidemia. LAL-D is characterized by accelerated atherosclerotic cardiovascular disease (ASCVD) and hepatic microvesicular or mixed steatosis, leading to inflammation, fibrosis, cirrhosis and liver failure. LAL-D presents as a clinical continuum with two phenotypes: the infantile-onset phenotype, formally referred to as Wolman disease, and the later-onset phenotype, formerly referred to as cholesteryl ester storage disease. Infants with LAL-D present within the first few weeks of life with vomiting, diarrhea, hepatosplenomegaly, failure to thrive and rapid progression to liver failure and death by 6–12 months of age. Children and young adults with LAL-D generally present with marked dyslipidemia, hepatic enzyme elevation, hepatomegaly and mixed steatosis by liver biopsy. The average age of the initial signs and symptoms of the later-onset phenotype is about 5 years old. The typical dyslipidemia is a significantly elevated low-density lipoprotein cholesterol (LDL-C) concentration and a low high-density lipoprotein cholesterol (HDL-C) concentration, placing these individuals at heightened risk for premature ASCVD. Diagnosis of the later-onset phenotype of LAL-D requires a heightened awareness of the disease because the dyslipidemia and hepatic transaminase elevation combination are common and overlap with other metabolic disorders. LAL-D should be considered in the differential diagnosis of healthy weight children and young adults with unexplained hepatic transaminase elevation accompanied by an elevated LDL-C level (>160 mg/dL) and low HDL-C level (<35 mg/dL) that is not caused by monogenic and polygenic lipid disorders or secondary factors. Treatment of LAL-D with sebelipase alfa (LAL replacement enzyme) should be considered as the standard of treatment in all individuals diagnosed with LAL-D. Other ASCVD risk factors that may be present (hypertension, tobacco use, diabetes mellitus, etc.) should be managed appropriately, consistent with secondary prevention goals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Cardiovascular Drugs Springer Journals

Managing Cardiovascular Risk in Lysosomal Acid Lipase Deficiency

Loading next page...
 
/lp/springer-journals/managing-cardiovascular-risk-in-lysosomal-acid-lipase-deficiency-r19zT7CgXu

References (112)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Medicine & Public Health; Cardiology; Pharmacotherapy; Pharmacology/Toxicology
ISSN
1175-3277
eISSN
1179-187X
DOI
10.1007/s40256-017-0216-5
pmid
28197978
Publisher site
See Article on Publisher Site

Abstract

Lysosomal acid lipase deficiency (LAL-D) is a rare, life-threatening, autosomal recessive, lysosomal storage disease caused by mutations in the LIPA gene, which encodes for lysosomal acid lipase (LAL). This enzyme is necessary for the hydrolysis of cholesteryl ester and triglyceride in lysosomes. Deficient LAL activity causes accumulation of these lipids in lysosomes and a marked decrease in the cytoplasmic free cholesterol concentration, leading to dysfunctional cholesterol homeostasis. The accumulation of neutral lipid occurs predominantly in liver, spleen, and macrophages throughout the body, and the aberrant cholesterol homeostasis causes a marked dyslipidemia. LAL-D is characterized by accelerated atherosclerotic cardiovascular disease (ASCVD) and hepatic microvesicular or mixed steatosis, leading to inflammation, fibrosis, cirrhosis and liver failure. LAL-D presents as a clinical continuum with two phenotypes: the infantile-onset phenotype, formally referred to as Wolman disease, and the later-onset phenotype, formerly referred to as cholesteryl ester storage disease. Infants with LAL-D present within the first few weeks of life with vomiting, diarrhea, hepatosplenomegaly, failure to thrive and rapid progression to liver failure and death by 6–12 months of age. Children and young adults with LAL-D generally present with marked dyslipidemia, hepatic enzyme elevation, hepatomegaly and mixed steatosis by liver biopsy. The average age of the initial signs and symptoms of the later-onset phenotype is about 5 years old. The typical dyslipidemia is a significantly elevated low-density lipoprotein cholesterol (LDL-C) concentration and a low high-density lipoprotein cholesterol (HDL-C) concentration, placing these individuals at heightened risk for premature ASCVD. Diagnosis of the later-onset phenotype of LAL-D requires a heightened awareness of the disease because the dyslipidemia and hepatic transaminase elevation combination are common and overlap with other metabolic disorders. LAL-D should be considered in the differential diagnosis of healthy weight children and young adults with unexplained hepatic transaminase elevation accompanied by an elevated LDL-C level (>160 mg/dL) and low HDL-C level (<35 mg/dL) that is not caused by monogenic and polygenic lipid disorders or secondary factors. Treatment of LAL-D with sebelipase alfa (LAL replacement enzyme) should be considered as the standard of treatment in all individuals diagnosed with LAL-D. Other ASCVD risk factors that may be present (hypertension, tobacco use, diabetes mellitus, etc.) should be managed appropriately, consistent with secondary prevention goals.

Journal

American Journal of Cardiovascular DrugsSpringer Journals

Published: Feb 14, 2017

There are no references for this article.