Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Liquid-state particle physics

Liquid-state particle physics MATERIAL WITNESS news & views nucleic acid nanotechnology. Invoking the nanoparticle uniformity and decreasing Institut, Technische Universität München, shape-complementarity principles and the degree of chemical defects in the sticky Am Coulombwall 4a, 85748 Garching near Munich, generic weak-contact interactions has also DNA shell will help to grow larger crystals. Germany. recently emerged as one strategy towards In DNA nanotechnology, the self-assembly e-mail: dietz@tum.de producing reconfigurable, higher-order of shape-complementary objects surrounded References DNA assemblies . One clear goal in both by a dense, generically weakly attractive 1. O’Brien, M. N., Jones, M. R., Lee, B. & Mirkin, C. A. fields is to produce large-scale 3D crystals envelope (as realized, for example, by using Nature Mater. 14, 833–839 (2015). by rational design. In DNA nanotechnology, short single-stranded DNA tails) may 2. Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Nature Commun. 6, 6912 (2015). this has been achieved in one singular case prove to be a promising route to producing 3. Auyeung, E. et al. Nature 505, 73–77 (2014). with DNA tensegrity triangles and variants complex 3D crystals from defined-size DNA 4. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Science 6 7 of it . In DNA-mediated nanoparticle objects such as 3D DNA origami or 3D http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Materials Springer Journals

Liquid-state particle physics

Nature Materials , Volume 14 (8) – Jul 23, 2015

Liquid-state particle physics

Abstract

MATERIAL WITNESS news & views nucleic acid nanotechnology. Invoking the nanoparticle uniformity and decreasing Institut, Technische Universität München, shape-complementarity principles and the degree of chemical defects in the sticky Am Coulombwall 4a, 85748 Garching near Munich, generic weak-contact interactions has also DNA shell will help to grow larger crystals. Germany. recently emerged as one strategy towards In DNA nanotechnology, the self-assembly e-mail:...
Loading next page...
 
/lp/springer-journals/liquid-state-particle-physics-Yafy0WCr8B

References (7)

  • V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, M. Friedl, R. Frühwirth, V. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krammer, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, W. Treberer-treberspurg, W. Waltenberger, C. Wulz, V. Mossolov, N. Shumeiko, J. Gonzalez, S. Alderweireldt, S. Bansal, T. Cornelis, E. Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Klundert, H. Haevermaet, P. Mechelen, N. Remortel, A. Spilbeeck, F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Doninck, P. Mulders, G. Onsem, I. Villella, C. Caillol, B. Clerbaux, G. Lentdecker, D. Dobur, L. Favart, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè, A. Randle-conde, T. Reis, T. Ševa, L. Thomas, C. Velde, P. Vanlaer, J. Wang, F. Zenoni, V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crucy, A. Fagot, G. Garcia, J. Mccartin, A. Rios, D. Poyraz, D. Ryckbosch, S. Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis, S. Başeğmez, C. Beluffi, G. Bruno, R. Castello, A. Caudron, L. Ceard, G. Silveira, C. Delaere, T. Pree, D. Favart, L. Forthomme, A. Giammanco, J. Hollar, A. Jafari, P. Jež, M. Komm, V. Lemaître, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov, L. Quertenmont, M. Selvaggi, M. Maroño, J. Garcia, N. Beliy, T. Caebergs, E. Daubie, G. Hammad, W. Júnior, G. Alves, L. Brito, M. Junior, T. Martins, J. Molina, C. Herrera, M. Pol, P. Teles, W. Carvalho, J. Chinellato, A. Custódio, E. Costa, D. Damião, C. Martins, S. Souza, H. Malbouisson, D. Figueiredo, L. Mundim, H. Nogima, W. Silva, J. Santaolalla, A. Santoro, A. Sznajder, E. Manganote, A. Pereira, C. Bernardes, S. Dogra, T. Tomei, E. Gregores, P. Mercadante, S. Novaes, S. Padula, A. Aleksandrov, V. Genchev, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova, A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov, J. Bian, G. Chen, Hucheng Chen, M. Chen, T. Cheng, R. Du, C. Jiang, R. Plestina, F. Romeo, J. Tao, Z. Wang, C. Asawatangtrakuldee, Y. Ban, S. Liu, Y. Mao, S. Qian, D. Wang, Z. Xu, Fengwangdong Zhang, L. Zhang, W. Zou, C. Avila, A. Cabrera, L. Sierra, C. Florez, J. Gomez, B. Moreno, J. Sanabria, N. Godinovic, D. Lelas, D. Polic, I. Puljak, Z. Antunović, M. Kovac, V. Brigljevic, K. Kadija, J. Luetić, D. Mekterovic, L. Sudić, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. Razis, H. Rykaczewski, M. Bodlák, M. Finger, Y. Assran, A. Kamel, M. Mahmoud, A. Radi, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, P. Eerola, M. Voutilainen, J. Härkönen, V. Karimäki, R. Kinnunen, M. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland, J. Talvitie, T. Tuuva, M. Besançon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Monchenault, P. Jarry, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Titov, S. Baffioni, F. Beaudette, P. Busson, E. Chapon, C. Charlot, T. Dahms, L. Dobrzyński, N. Filipovic, A. Florent, R. Cassagnac, L. Mastrolorenzo, P. Miné, I. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, S. Regnard, R. Salerno, J. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi, J. Agram, J. Andrea, A. Aubin, D. Bloch, J. Brom, E. Chabert, C. Collard, É. Conte, J. Fontaine, D. Gelé, U. Goerlach, C. Goetzmann, A. Bihan, K. Skovpen, P. Hove, S. Gadrat, S. Beauceron, N. Beaupère, C. Bernet, G. Boudoul, E. Bouvier, S. Brochet, C. Montoya, J. Chasserat, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, A. Pequegnot, S. Perriès, J. Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Donckt, P. Verdier, S. Viret, H. Xiao, Z. Tsamalaidze, C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, A. Heister, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, J. Sammet, S. Schael, J. Schulte, H. Weber, B. Wittmer, V. Zhukov, M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, H. Reithler, S. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann, A. Nowack, I. Nugent, C. Pistone, O. Pooth, A. Stahl, M. Martin, I. Asin, N. Bartosik, J. Behr, U. Behrens, A. Bell, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. García, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel, H. Jung, A. Kalogeropoulos, O. Karacheban, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, I. Melzer-Pellmann, A. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Plačakytė, A. Raspereza, P. Cipriano, B. Roland, E. Ron, M. Sahin, J. Salfeld-Nebgen, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A. Treviño, R. Walsh, C. Wissing, V. Blobel, M. Vignali, A. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R. Höing, A. Junkes, H. Kirschenmann, R. Klanner, R. Kogler, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, J. Ott, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, T. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt (2015)

    Evidence for Collective Multiparticle Correlations in p-Pb Collisions.

    Physical review letters, 115 1

  • K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov (2005)

    Two-dimensional gas of massless Dirac fermions in graphene

    Nature, 438

  • A. Davis, R. Brandenberger (1995)

    Formation and interactions of topological defects

  • J. Köppen (1997)

    Formation and interactions of topological defects

    Journal of Atmospheric and Solar-Terrestrial Physics, 59

  • L. Fu, C. Kane (2007)

    Superconducting proximity effect and majorana fermions at the surface of a topological insulator.

    Physical review letters, 100 9

  • (2015)

    Evidence for Collective Multiparticle Correlations in $p\text{\ensuremath{-}}\mathrm{Pb}$ Collisions

  • J. Ollitrault (2015)

    The Littlest Liquid

    Physics, 8

Publisher
Springer Journals
Copyright
Copyright © 2015 by Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Subject
Materials Science; Materials Science, general; Optical and Electronic Materials; Biomaterials; Nanotechnology; Condensed Matter Physics
ISSN
1476-1122
eISSN
1476-4660
DOI
10.1038/nmat4373
Publisher site
See Article on Publisher Site

Abstract

MATERIAL WITNESS news & views nucleic acid nanotechnology. Invoking the nanoparticle uniformity and decreasing Institut, Technische Universität München, shape-complementarity principles and the degree of chemical defects in the sticky Am Coulombwall 4a, 85748 Garching near Munich, generic weak-contact interactions has also DNA shell will help to grow larger crystals. Germany. recently emerged as one strategy towards In DNA nanotechnology, the self-assembly e-mail: dietz@tum.de producing reconfigurable, higher-order of shape-complementary objects surrounded References DNA assemblies . One clear goal in both by a dense, generically weakly attractive 1. O’Brien, M. N., Jones, M. R., Lee, B. & Mirkin, C. A. fields is to produce large-scale 3D crystals envelope (as realized, for example, by using Nature Mater. 14, 833–839 (2015). by rational design. In DNA nanotechnology, short single-stranded DNA tails) may 2. Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Nature Commun. 6, 6912 (2015). this has been achieved in one singular case prove to be a promising route to producing 3. Auyeung, E. et al. Nature 505, 73–77 (2014). with DNA tensegrity triangles and variants complex 3D crystals from defined-size DNA 4. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Science 6 7 of it . In DNA-mediated nanoparticle objects such as 3D DNA origami or 3D

Journal

Nature MaterialsSpringer Journals

Published: Jul 23, 2015

There are no references for this article.