Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Linear Volterra Integral Equations

Linear Volterra Integral Equations The Kurzweil-Henstock integral formalism is applied to establish the existence of solutions to the linear integral equations of Volterra-type $$ x{\left( t \right)} + \;{}^{ * }{\int_{{\left[ {a,t} \right]}} {\alpha {\left( s \right)}x{\left( s \right)}ds = f{\left( t \right)}} },\;t \in {\left[ {a,b} \right]}, $$ http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mathematicae Applicatae Sinica Springer Journals

Loading next page...
 
/lp/springer-journals/linear-volterra-integral-equations-5ZKbO3gRpA
Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag Berlin Heidelberg
Subject
Mathematics; Applications of Mathematics; Math Applications in Computer Science; Theoretical, Mathematical and Computational Physics
ISSN
0168-9673
eISSN
1618-3932
DOI
10.1007/s102550200057
Publisher site
See Article on Publisher Site

Abstract

The Kurzweil-Henstock integral formalism is applied to establish the existence of solutions to the linear integral equations of Volterra-type $$ x{\left( t \right)} + \;{}^{ * }{\int_{{\left[ {a,t} \right]}} {\alpha {\left( s \right)}x{\left( s \right)}ds = f{\left( t \right)}} },\;t \in {\left[ {a,b} \right]}, $$

Journal

Acta Mathematicae Applicatae SinicaSpringer Journals

Published: Jan 1, 2002

References