Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Linear-Size hopsets with small hopbound, and constant-hopbound hopsets in RNC

Linear-Size hopsets with small hopbound, and constant-hopbound hopsets in RNC Hopsets are a fundamental graph-theoretic and graph-algorithmic construct, and they are widely used for distance-related problems in a variety of computational settings. Currently existing constructions of hopsets produce hopsets either with Ω(nlogn)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega (n \log n)$$\end{document} edges, or with a hopbound nΩ(1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n^{\Omega (1)}$$\end{document}. In this paper we devise a construction of linear-size hopsets with hopbound (ignoring the dependence on ϵ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\epsilon $$\end{document}) (loglogn)loglogn+O(1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\log \log n)^{\log \log n + O(1)}$$\end{document}. This improves the previous hopbound for linear-size hopsets almost exponentially. We also devise efficient implementations of our construction in PRAM and distributed settings. The only existing PRAM algorithm [19] for computing hopsets with a constant (i.e., independent of n) hopbound requires nΩ(1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n^{\Omega (1)}$$\end{document} time. We devise a PRAM algorithm with polylogarithmic running time for computing hopsets with a constant hopbound, i.e., our running time is exponentially better than the previous one. Moreover, these hopsets are also significantly sparser than their counterparts from [19]. We apply these hopsets to achieve the following online variant of shortest paths in the PRAM model: preprocess a given weighted graph within polylogarithmic time, and then given any query vertex v, report all approximate shortest paths from v in constant time. All previous constructions of hopsets require either polylogarithmic time per query or polynomial preprocessing time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Distributed Computing Springer Journals

Linear-Size hopsets with small hopbound, and constant-hopbound hopsets in RNC

Distributed Computing , Volume 35 (5) – Oct 1, 2022

Loading next page...
 
/lp/springer-journals/linear-size-hopsets-with-small-hopbound-and-constant-hopbound-hopsets-HsSAnmXsai
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
ISSN
0178-2770
eISSN
1432-0452
DOI
10.1007/s00446-022-00431-z
Publisher site
See Article on Publisher Site

Abstract

Hopsets are a fundamental graph-theoretic and graph-algorithmic construct, and they are widely used for distance-related problems in a variety of computational settings. Currently existing constructions of hopsets produce hopsets either with Ω(nlogn)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega (n \log n)$$\end{document} edges, or with a hopbound nΩ(1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n^{\Omega (1)}$$\end{document}. In this paper we devise a construction of linear-size hopsets with hopbound (ignoring the dependence on ϵ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\epsilon $$\end{document}) (loglogn)loglogn+O(1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\log \log n)^{\log \log n + O(1)}$$\end{document}. This improves the previous hopbound for linear-size hopsets almost exponentially. We also devise efficient implementations of our construction in PRAM and distributed settings. The only existing PRAM algorithm [19] for computing hopsets with a constant (i.e., independent of n) hopbound requires nΩ(1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n^{\Omega (1)}$$\end{document} time. We devise a PRAM algorithm with polylogarithmic running time for computing hopsets with a constant hopbound, i.e., our running time is exponentially better than the previous one. Moreover, these hopsets are also significantly sparser than their counterparts from [19]. We apply these hopsets to achieve the following online variant of shortest paths in the PRAM model: preprocess a given weighted graph within polylogarithmic time, and then given any query vertex v, report all approximate shortest paths from v in constant time. All previous constructions of hopsets require either polylogarithmic time per query or polynomial preprocessing time.

Journal

Distributed ComputingSpringer Journals

Published: Oct 1, 2022

References