Access the full text.
Sign up today, get DeepDyve free for 14 days.
The vulnerability of gastropods to their predators varies with life history traits such as morphology, body size, behavior, and growth rates as well as predator size. A recent study suggested that the invasive apple snail, Pomacea maculata, was considerably more vulnerable to crayfish predators than the native Florida apple snail, P. paludosa. The difference was hypothesized to be caused by the relatively small hatchling size of P. maculata. To test this hypothesis, we conducted a series of feeding assays designed to quantify maximum feeding rates and selective foraging of crayfish on apple snails. The rate at which crayfish killed individual P. maculata (i.e., kill rates) decreased with snail size, and kill rates on both species increased with crayfish size. Kill rates on juvenile P. maculata were higher than kill rates on size-matched hatchling P. paludosa, and crayfish fed selectively on P. maculata when offered mixed groups of size-matched snails. Further analyses revealed that hatchling P. paludosa possess shells 1.8× heavier than size-matched P. maculata suggesting differences in vulnerability to crayfish were consistent with interspecific differences in shell defenses. Differences in hatchling size and defensive traits in combination make crayfish kill rates on hatchling P. maculata approximately 15.4× faster than on hatchling P. paludosa, but the relative contribution of hatchling size to differences in apple snail vulnerability was >3× greater than the contribution of defensive traits.
Aquatic Ecology – Springer Journals
Published: Apr 11, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.