Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Lie centralizers at zero products on a class of operator algebras

Lie centralizers at zero products on a class of operator algebras Let A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {A}}$$\end{document} be an algebra. In this paper, we consider the problem of determining a linear map ψ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\psi $$\end{document} on A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {A}}$$\end{document} satisfying a,b∈A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a,b\in {\mathcal {A}}$$\end{document}, ab=0⟹ψ([a,b])=[ψ(a),b](C1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ab=0 \Longrightarrow \psi ([a,b])=[\psi (a),b] \, (C1) $$\end{document} or ab=0⟹ψ([a,b])=[a,ψ(b)](C2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ab=0 \Longrightarrow \psi ([a,b])=[a,\psi (b)] \, (C2)$$\end{document}. We first compare linear maps satisfying (C1) or (C2), commuting linear maps, and Lie centralizers with a variety of examples. In fact, we see that linear maps satisfying (C1), (C2) and commuting linear maps are different classes of each other. Then, we introduce a class of operator algebras on Banach spaces such that if A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {A}}$$\end{document} is in this class, then any linear map on A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {A}}$$\end{document} satisfying (C1) (or (C2)) is a commuting linear map. As an application of these results, we characterize Lie centralizers and linear maps satisfying (C1) (or (C2)) on nest algebras. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Functional Analysis Springer Journals

Lie centralizers at zero products on a class of operator algebras

Annals of Functional Analysis , Volume 12 (2) – Mar 11, 2021

Loading next page...
 
/lp/springer-journals/lie-centralizers-at-zero-products-on-a-class-of-operator-algebras-CZB2Ymvgcy

References (31)

Publisher
Springer Journals
Copyright
Copyright © Tusi Mathematical Research Group (TMRG) 2021
ISSN
2639-7390
eISSN
2008-8752
DOI
10.1007/s43034-021-00123-y
Publisher site
See Article on Publisher Site

Abstract

Let A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {A}}$$\end{document} be an algebra. In this paper, we consider the problem of determining a linear map ψ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\psi $$\end{document} on A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {A}}$$\end{document} satisfying a,b∈A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a,b\in {\mathcal {A}}$$\end{document}, ab=0⟹ψ([a,b])=[ψ(a),b](C1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ab=0 \Longrightarrow \psi ([a,b])=[\psi (a),b] \, (C1) $$\end{document} or ab=0⟹ψ([a,b])=[a,ψ(b)](C2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ab=0 \Longrightarrow \psi ([a,b])=[a,\psi (b)] \, (C2)$$\end{document}. We first compare linear maps satisfying (C1) or (C2), commuting linear maps, and Lie centralizers with a variety of examples. In fact, we see that linear maps satisfying (C1), (C2) and commuting linear maps are different classes of each other. Then, we introduce a class of operator algebras on Banach spaces such that if A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {A}}$$\end{document} is in this class, then any linear map on A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {A}}$$\end{document} satisfying (C1) (or (C2)) is a commuting linear map. As an application of these results, we characterize Lie centralizers and linear maps satisfying (C1) (or (C2)) on nest algebras.

Journal

Annals of Functional AnalysisSpringer Journals

Published: Mar 11, 2021

There are no references for this article.