Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Large deformation plasticity

Large deformation plasticity The theory of plasticity as a special field of continuum mechanics deals with the irreversible, i.e. permanent, deformation of solids. Under the action of given loads or deformations, the state of the stresses and strains or the strain rates in these bodies is described. In this way, it complements the theory of elasticity for the reversible behavior of solids. In practice, it has been observed that many materials behave elastically up to a certain load (yield point), beyond that load, however, increasingly plastic or liquid-like. The combination of these two material properties is known as elastoplasticity. The classical elastoplastic material behavior is assumed to be time-independent or rate-independent. In contrast, we call a time- or rate-dependent behavior visco-elastoplastic and visco-plastic—if the elastic part of the deformation is neglected. In plasticity theory, because of the given loads the states of the state variables stress, strain and temperature as well as their changes are described. For this purpose, the observed phenomena are introduced and put into mathematical relationships. The constitutive relations describing the specific material behavior are finally embedded in the fundamental relations of continuum theory and physics. Historically, the theory of plasticity was introduced in order to better estimate the strength of constructions. An analysis based purely on elastic codes is not in a position to do this, and can occasionally even lead to incorrect interpretations. On the other hand, the entire field of forming techniques requires a theory for the description of plastic behavior. Starting from the classical description of plastic behavior with small deformations, the present review is intended to provide an insight into the state of the art when taking into account finite deformations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Acta Mechanica Sinica" Springer Journals

Large deformation plasticity

"Acta Mechanica Sinica" , Volume 36 (2) – Apr 12, 2020

Loading next page...
 
/lp/springer-journals/large-deformation-plasticity-4EUT0uduC6

References (184)

Publisher
Springer Journals
Copyright
Copyright © The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2020
ISSN
0567-7718
eISSN
1614-3116
DOI
10.1007/s10409-020-00926-7
Publisher site
See Article on Publisher Site

Abstract

The theory of plasticity as a special field of continuum mechanics deals with the irreversible, i.e. permanent, deformation of solids. Under the action of given loads or deformations, the state of the stresses and strains or the strain rates in these bodies is described. In this way, it complements the theory of elasticity for the reversible behavior of solids. In practice, it has been observed that many materials behave elastically up to a certain load (yield point), beyond that load, however, increasingly plastic or liquid-like. The combination of these two material properties is known as elastoplasticity. The classical elastoplastic material behavior is assumed to be time-independent or rate-independent. In contrast, we call a time- or rate-dependent behavior visco-elastoplastic and visco-plastic—if the elastic part of the deformation is neglected. In plasticity theory, because of the given loads the states of the state variables stress, strain and temperature as well as their changes are described. For this purpose, the observed phenomena are introduced and put into mathematical relationships. The constitutive relations describing the specific material behavior are finally embedded in the fundamental relations of continuum theory and physics. Historically, the theory of plasticity was introduced in order to better estimate the strength of constructions. An analysis based purely on elastic codes is not in a position to do this, and can occasionally even lead to incorrect interpretations. On the other hand, the entire field of forming techniques requires a theory for the description of plastic behavior. Starting from the classical description of plastic behavior with small deformations, the present review is intended to provide an insight into the state of the art when taking into account finite deformations.

Journal

"Acta Mechanica Sinica"Springer Journals

Published: Apr 12, 2020

There are no references for this article.