Access the full text.
Sign up today, get DeepDyve free for 14 days.
The brain is the most complex system we know of. Despite the wealth of data available in neuroscience, our understanding of this system is still very limited. Here we argue that an essential component in our arsenal of methods to advance our understanding of the brain is the construction of artificial brain-like systems. In this way we can encompass the multi-level organisation of the brain and its role in the context of the complete embodied real-world and real-time perceiving and behaving system. Hence, on the one hand, we must be able to develop and validate theories of brains as closing the loop between perception and action, and on the other hand as interacting with the real world. Evidence is growing that one of the sources of the computational power of neuronal systems lies in the massive and specific connectivity, rather than the complexity of single elements. To meet these challenges—multiple levels of organisation, sophisticated connectivity, and the interaction of neuronal models with the real-world—we have developed a multi-level neuronal simulation environment, iqr. This framework deals with these requirements by directly transforming them into the core elements of the simulation environment itself. iqr provides a means to design complex neuronal models graphically, and to visualise and analyse their properties on-line. In iqr connectivity is defined in a flexible, yet compact way, and simulations run at a high speed, which allows the control of real-world devices—robots in the broader sense—in real-time. The architecture of iqr is modular, providing the possibility to write new neuron, and synapse types, and custom interfaces to other hardware systems. The code of iqr is publicly accessible under the GNU General Public License (GPL). iqr has been in use since 1996 and has been the core tool for a large number of studies ranging from detailed models of neuronal systems like the cerebral cortex, and the cerebellum, to robot based models of perception, cognition and action to large-scale real-world systems. In addition, iqr has been widely used over many years to introduce students to neuronal simulation and neuromorphic control. In this paper we outline the conceptual and methodological background of iqr and its design philosophy. Thereafter we present iqr’s main features and computational properties. Finally, we describe a number of projects using iqr, singling out how iqr is used for building a “synthetic insect”.
Neuroinformatics – Springer Journals
Published: May 26, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.