Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Investigation of stain-resistant cationic dyeable nylon 6 modified with sodium salt of 5-sulfoisophthalic acid and polyethylene glycol

Investigation of stain-resistant cationic dyeable nylon 6 modified with sodium salt of... Abstract Nylon 6 can be dyed with acid dyes and therefore it can also be stained by natural or artificial acid dyes existing in some foods and drinks when they are spilled on nylon fabrics. In this study, cationic dyeable polyamide (CD-PA6) was synthesized with sodium salt from 5-sulfoisophthalic acid (5-SSIPA) and easily cationic dyeable polyamide (ECD-PA6) was prepared with 5-SSIAP and polyethylene glycol (PEG). The influence of the chemical modification to CD-PA6 and ECD-PA6 on the resultant structures were characterized by wide angle X-ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FT-IR), and their thermal properties were tested by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The effects of varying 5-SSIPA content on the cationic dye uptake and acid dye resistance rate were also investigated, as well as mechanical properties of the modified PA6. Incorporating PEG not only destroyed the regularity of molecular chain arrangement and created more amorphous regions in the ECD-PA6 samples, but also changed the nylon 6 from α-form to γ-form. Results revealed a considerable improvement in cationic dye uptake and acid dye resistance rate in the modified fibers compared with unmodified fibers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Investigation of stain-resistant cationic dyeable nylon 6 modified with sodium salt of 5-sulfoisophthalic acid and polyethylene glycol

Loading next page...
 
/lp/springer-journals/investigation-of-stain-resistant-cationic-dyeable-nylon-6-modified-VZmGBQ5KqF

References (25)

Publisher
Springer Journals
Copyright
2016 The Korean Fiber Society and Springer Science+Business Media Dordrecht
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-016-5748-9
Publisher site
See Article on Publisher Site

Abstract

Abstract Nylon 6 can be dyed with acid dyes and therefore it can also be stained by natural or artificial acid dyes existing in some foods and drinks when they are spilled on nylon fabrics. In this study, cationic dyeable polyamide (CD-PA6) was synthesized with sodium salt from 5-sulfoisophthalic acid (5-SSIPA) and easily cationic dyeable polyamide (ECD-PA6) was prepared with 5-SSIAP and polyethylene glycol (PEG). The influence of the chemical modification to CD-PA6 and ECD-PA6 on the resultant structures were characterized by wide angle X-ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FT-IR), and their thermal properties were tested by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The effects of varying 5-SSIPA content on the cationic dye uptake and acid dye resistance rate were also investigated, as well as mechanical properties of the modified PA6. Incorporating PEG not only destroyed the regularity of molecular chain arrangement and created more amorphous regions in the ECD-PA6 samples, but also changed the nylon 6 from α-form to γ-form. Results revealed a considerable improvement in cationic dye uptake and acid dye resistance rate in the modified fibers compared with unmodified fibers.

Journal

Fibers and PolymersSpringer Journals

Published: Jul 1, 2016

There are no references for this article.