Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Investigation of Power losses on Solar Photovoltaic Array Interconnections Under Mismatch Conditions

Investigation of Power losses on Solar Photovoltaic Array Interconnections Under Mismatch Conditions The mismatch effect creates a difference between the sum of maximum power generated by individual Photovoltaic (PV) modules and the overall PV array power output. Mismatch effects can be classified into internal and external mismatch effects. Internal mismatch effect occurs because of factors such as manufacturing defects and ageing. The external effect occurs because of variations in solar irradiance and temperature. This paper presents the investigation of internal and external mismatch effects on various 5×4 Photovoltaic (PV) array interconnections such as series-parallel, total-cross-tied, bridge-link, honey-comb, hybrid SP-TCT, hybrid BL-TCT, along with proposed hybrid HC-TCT and hybrid HC-BL. Six mismatch case studies are considered in this paper to investigate the performance of PV array connections. Among the six cases, three cases are due to internal mismatch effects, and the remaining three cases belong to the external effects. In addition, the global maximum power point (GMPP), the voltage at GMPP, thermal voltage, power loss, fill-factor, efficiency (η), and possible local peaks (PLP) parameters are calculated and compared for each PV array connection under all case studies using Matlab-Simulink. Also, for each PV array connection, the revenue generation is calculated from energy savings under mismatch effects. The paper summary shows that TCT, HC-TCT, and HC-BL array connections delivered beneficial results under external effects, and TCT, HC, HC-TCT, and HC-BL provided superior results under internal effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Technology and Economics of Smart Grids and Sustainable Energy Springer Journals

Investigation of Power losses on Solar Photovoltaic Array Interconnections Under Mismatch Conditions

Loading next page...
 
/lp/springer-journals/investigation-of-power-losses-on-solar-photovoltaic-array-OuoBzjDRud

References (42)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2021
eISSN
2199-4706
DOI
10.1007/s40866-021-00117-8
Publisher site
See Article on Publisher Site

Abstract

The mismatch effect creates a difference between the sum of maximum power generated by individual Photovoltaic (PV) modules and the overall PV array power output. Mismatch effects can be classified into internal and external mismatch effects. Internal mismatch effect occurs because of factors such as manufacturing defects and ageing. The external effect occurs because of variations in solar irradiance and temperature. This paper presents the investigation of internal and external mismatch effects on various 5×4 Photovoltaic (PV) array interconnections such as series-parallel, total-cross-tied, bridge-link, honey-comb, hybrid SP-TCT, hybrid BL-TCT, along with proposed hybrid HC-TCT and hybrid HC-BL. Six mismatch case studies are considered in this paper to investigate the performance of PV array connections. Among the six cases, three cases are due to internal mismatch effects, and the remaining three cases belong to the external effects. In addition, the global maximum power point (GMPP), the voltage at GMPP, thermal voltage, power loss, fill-factor, efficiency (η), and possible local peaks (PLP) parameters are calculated and compared for each PV array connection under all case studies using Matlab-Simulink. Also, for each PV array connection, the revenue generation is calculated from energy savings under mismatch effects. The paper summary shows that TCT, HC-TCT, and HC-BL array connections delivered beneficial results under external effects, and TCT, HC, HC-TCT, and HC-BL provided superior results under internal effects.

Journal

Technology and Economics of Smart Grids and Sustainable EnergySpringer Journals

Published: Oct 14, 2021

Keywords: PV array modelling; Partial shadings; Global power output; PV array connections; PV efficiency

There are no references for this article.