Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Investigating the effect of mixing water dispersion on concrete strength and microstructure

Investigating the effect of mixing water dispersion on concrete strength and microstructure Worldwide, the concrete industry is consuming about one billion cubic meters of mixing and curing fresh water per year. A settled fact in the cement industry tells that excessive water content leads to a reduction in strength of cement mortar, however inadequate water content incurs poor workability. The need for research to study enhancing the utilization of the same amount of potable water in concrete to maintain higher ultimate compressive strength, workability, and durability is essential. The proposed plan of work introduced a technique for the addition of the mixing water through sprinkling the water in the mixer as compared with the pouring traditional method, this was investigated via compressive strength, tensile strength, X-ray diffraction (XRD), and Scanning electron microscope (SEM). The results revealed that the new technique showed to be a significant method that could reduce the mixing water content within the concrete mixes while keeping the strength and durability at their ultimate levels. The gain in compressive, and tensile strengths reached in some mixes about 31%, and 48% respectively, with an incomparable microstructure as it has been found employing the SEM micrographs, and XRD diagrams. Finally, it is highly recommended to study the application of the mixing water through sprinkling with Nano nozzles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Building Pathology and Rehabilitation Springer Journals

Investigating the effect of mixing water dispersion on concrete strength and microstructure

Loading next page...
 
/lp/springer-journals/investigating-the-effect-of-mixing-water-dispersion-on-concrete-ujpv0Q0j68
Publisher
Springer Journals
Copyright
Copyright © 2019 by Springer Nature Switzerland AG
Subject
Engineering; Building Repair and Maintenance; Structural Materials; Engineering Thermodynamics, Heat and Mass Transfer; Energy Efficiency; Building Materials
ISSN
2365-3159
eISSN
2365-3167
DOI
10.1007/s41024-019-0062-8
Publisher site
See Article on Publisher Site

Abstract

Worldwide, the concrete industry is consuming about one billion cubic meters of mixing and curing fresh water per year. A settled fact in the cement industry tells that excessive water content leads to a reduction in strength of cement mortar, however inadequate water content incurs poor workability. The need for research to study enhancing the utilization of the same amount of potable water in concrete to maintain higher ultimate compressive strength, workability, and durability is essential. The proposed plan of work introduced a technique for the addition of the mixing water through sprinkling the water in the mixer as compared with the pouring traditional method, this was investigated via compressive strength, tensile strength, X-ray diffraction (XRD), and Scanning electron microscope (SEM). The results revealed that the new technique showed to be a significant method that could reduce the mixing water content within the concrete mixes while keeping the strength and durability at their ultimate levels. The gain in compressive, and tensile strengths reached in some mixes about 31%, and 48% respectively, with an incomparable microstructure as it has been found employing the SEM micrographs, and XRD diagrams. Finally, it is highly recommended to study the application of the mixing water through sprinkling with Nano nozzles.

Journal

Journal of Building Pathology and RehabilitationSpringer Journals

Published: Aug 13, 2019

References