Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Investigating the effect of elevated temperatures on the properties of mortar produced with volcanic ash

Investigating the effect of elevated temperatures on the properties of mortar produced with... During the recent years, the use of pozzolanic materials (e.g., volcanic ash) in concrete and cement manufacturing has increased significantly since it can reduce the environment hazard associated with using Portland cement. In this paper, the effect of elevated temperatures on the physical and mechanical characteristics of building mortar produced with volcanic ash is experimentally explored. In order to evaluate the performance of the mortar, four different proportions of volcanic ash (0, 5, 15, and 25%)—as weight replacement of the cement—were prepared. A series of tests were conducted after 28, 90, and 120 days under different temperatures (25, 200, 500, and 800 °C). This paper demonstrates that the replacement of cement by a proportion of volcanic ash can sustain an acceptable level of compressive strength and improve the overall characterization of the mortar while reducing the amount of CO2 released. The mortar with 15% ratio of the volcanic ash replacement showed better flexural and the tensile strength. This paper also highlights that the volcanic ash replacement affects the late-age properties of the mortar more than the early age ones at both ambient and elevated temperatures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Innovative Infrastructure Solutions Springer Journals

Investigating the effect of elevated temperatures on the properties of mortar produced with volcanic ash

Loading next page...
 
/lp/springer-journals/investigating-the-effect-of-elevated-temperatures-on-the-properties-of-ZYmUSYWXyY
Publisher
Springer Journals
Copyright
Copyright © Springer Nature Switzerland AG 2020
ISSN
2364-4176
eISSN
2364-4184
DOI
10.1007/s41062-020-0274-4
Publisher site
See Article on Publisher Site

Abstract

During the recent years, the use of pozzolanic materials (e.g., volcanic ash) in concrete and cement manufacturing has increased significantly since it can reduce the environment hazard associated with using Portland cement. In this paper, the effect of elevated temperatures on the physical and mechanical characteristics of building mortar produced with volcanic ash is experimentally explored. In order to evaluate the performance of the mortar, four different proportions of volcanic ash (0, 5, 15, and 25%)—as weight replacement of the cement—were prepared. A series of tests were conducted after 28, 90, and 120 days under different temperatures (25, 200, 500, and 800 °C). This paper demonstrates that the replacement of cement by a proportion of volcanic ash can sustain an acceptable level of compressive strength and improve the overall characterization of the mortar while reducing the amount of CO2 released. The mortar with 15% ratio of the volcanic ash replacement showed better flexural and the tensile strength. This paper also highlights that the volcanic ash replacement affects the late-age properties of the mortar more than the early age ones at both ambient and elevated temperatures.

Journal

Innovative Infrastructure SolutionsSpringer Journals

Published: Feb 18, 2020

There are no references for this article.