Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Interaction of Rhizospheric Bacteria and Nonrhizobial Endophytic Bacteria Moving from the Roots to the Rhizosphere of Pea Plants (Pisum sativum)

Interaction of Rhizospheric Bacteria and Nonrhizobial Endophytic Bacteria Moving from the Roots... Six of 11 strains of endophytic bacteria from pea (Pisum sativum L.) seeds were found in an aqueous medium of seedling-root growth under hydroculture conditions. It was shown that bacterial inoculates of Rhizobium leguminosarum bv. viceae, Pseudomonas syringae pv. pisi, Azotobacter chroococcum and Rhodococcus erythropolis had different effects on the composition and concentration of endophytic bacteria in the pea-seedling rhizosphere. All six endophytes were found to have different capacities for N-phenyl-2-naphthylamine (N-PNA) degradation to produce phthalates. The amount of non-degraded substrate and the proportion of phthalates remaining after substrate degradation indicate different levels of the catabolism of N-PNA, a negative allopathic component of legume root exudates. These parameters determined the degree of participation of endophytic bacteria in the control of the relationship between pea plants and bacteria with different interaction strategies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Microbiology Springer Journals

Interaction of Rhizospheric Bacteria and Nonrhizobial Endophytic Bacteria Moving from the Roots to the Rhizosphere of Pea Plants (Pisum sativum)

Loading next page...
 
/lp/springer-journals/interaction-of-rhizospheric-bacteria-and-nonrhizobial-endophytic-ajxtFvFfJM

References (18)

  • H.K. Chang, G.J. Zylstra (1998)

    10.1128/JB.180.24.6529-6537.1998

    J. Bacteriol, 180

  • T.N. Shafikova, Yu.V. Omelichkina, A.G. Enikeev, S.V. Boyarkina, D.E. Gvildis, A.A. Semenov (2018)

    10.1134/S0012496618030092

    Dokl. Biol. Sci., 480

  • D.-W. Liang, T. Zhang, H.H.P. Fang, J. He (2008)

    10.1007/s00253-008-1548-5

    Appl. Microbiol. Biotechnol, 80

  • V.K. Chebotar' (2015)

    271

    Appl. Biochem. Microbiol., 51

  • S.S. Dudeja, R. Giri, R. Saini, P. Suneja-Madan, E. Kothe (2012)

    10.1002/jobm.201100063

    J. Basic Microbiol, 52

  • R.W. Eaton, D.W. Ribbons (1982)

    10.1128/jb.151.1.48-57.1982

    J. Bacteriol, 151

  • U.A. Hartwig, C.M. Josef, D.A. Phillips (1991)

    10.1104/pp.95.3.797

    Plant Physiol, 95

  • S.R. Garipova (2012)

    493

    Usp. Sovrem. Biol, 132

  • L.E. Makarova, A.S. Morits, N.A. Sokolova, I.G. Petrova, A.A. Semenov, L.V. Dudareva, M.S. Tret’yakova, A.V. Sidorov (2020)

    10.1134/S0003683820010123

    Appl. Biochem. Microbiol, 56

  • (2004)

    RF Patent no. 2231546

  • P. Martinez-Hidalgo (2017)

    70

    Phytobioms, 1

  • J.S. Seo, Y.-S. Keum, Q.X. Li (2009)

    10.3390/ijerph6010278

    Int. J. Environ. Res. Public Health, 6

  • L.A. Belovezhets, L.E. Makarova, M.S. Tret’yakova, Yu.A. Markova, L.V. Dudareva, N.V. Semenova (2017)

    10.1134/S0003683817010069

    Appl. Biochem. Microbiol, 53

  • S.R. Garipova (2017)

    338

    Appl. Biochem. Microbiol, 53

  • J. Smerda, I. Sedlacek, Z. Pacova, E. Durnova, A. Smiskova, L. Havel (2005)

    10.1099/ijs.0.63759-0

    Int. J. Syst. Evol. Microbiol, 55

  • L.E. Makarova, V.I. Smirnov, L.V. Klyba, I.G. Petrova, L.V. Dudareva (2012)

    10.1134/S0003683812030064

    Appl. Biochem. Microbiol, 48

  • I.G. Kuznetsova, A.L. Sazanova, V.I. Safronova, A.G. Pinaev, A.V. Verkhozina, N.Yu. Tikhomirova, Yu.S. Osledkin, A.A. Belimov (2015)

    S.-Kh.

    Biol, 50

  • R. Muresu (2008)

    383

    FEMS Microbiol. Ecol, 63

Publisher
Springer Journals
Copyright
Copyright © Pleiades Publishing, Inc. 2021. ISSN 0003-6838, Applied Biochemistry and Microbiology, 2021, Vol. 57, No. 4, pp. 514–520. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2021, Vol. 57, No. 4, pp. 394–401.
ISSN
0003-6838
eISSN
1608-3024
DOI
10.1134/s0003683821040104
Publisher site
See Article on Publisher Site

Abstract

Six of 11 strains of endophytic bacteria from pea (Pisum sativum L.) seeds were found in an aqueous medium of seedling-root growth under hydroculture conditions. It was shown that bacterial inoculates of Rhizobium leguminosarum bv. viceae, Pseudomonas syringae pv. pisi, Azotobacter chroococcum and Rhodococcus erythropolis had different effects on the composition and concentration of endophytic bacteria in the pea-seedling rhizosphere. All six endophytes were found to have different capacities for N-phenyl-2-naphthylamine (N-PNA) degradation to produce phthalates. The amount of non-degraded substrate and the proportion of phthalates remaining after substrate degradation indicate different levels of the catabolism of N-PNA, a negative allopathic component of legume root exudates. These parameters determined the degree of participation of endophytic bacteria in the control of the relationship between pea plants and bacteria with different interaction strategies.

Journal

Applied Biochemistry and MicrobiologySpringer Journals

Published: Jul 27, 2021

Keywords: Pisum sativum L.; rhizosphere; intermicrobial interactions; endophytic bacteria; Rhizobium; Pseudomonas; Azotobacter; Rhodococcus; N-phenyl-2-naphthylamine; phthalates

There are no references for this article.