Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Integrated constellation design and deployment method for a regional augmented navigation satellite system using piggyback launches

Integrated constellation design and deployment method for a regional augmented navigation... The method proposed in this paper is adopted to solve problem B of the 9th China Trajectory Optimization Competition (CTOC). An accurate and economical constellation design strategy for regional augmented navigation satellite systems (RANSSs) has attracted a substantial amount of research interest owing to the increased demand for navigation services in complex environments. This paper proposes a hybrid method of constellation design and deployment for a RANSS to satisfy the navigation performance requirements and minimize the construction cost. First, the search spaces of the design parameters are determined by analyzing the orbital parameters of piggyback launches. Second, the constellation is designed as a combined Walker constellation and optimized by a differential evolution (DE) algorithm. Finally, optimal strategies for deploying satellites to the desired orbits are obtained using a transfer optimization design. The method was adopted to design a RANSS for servicing the 182 cities in the Asia-Pacific region. The configuration consists of five orbital planes and 80 navigation satellites and achieves a low construction cost with 10 piggyback launches. Furthermore, the constellation can cooperate with an existing navigation satellite system to further improve the navigation accuracy for all cities. The results reveal that the RANSS design and deployment problem can be effectively solved with a low construction cost and high navigation performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Astrodynamics Springer Journals

Integrated constellation design and deployment method for a regional augmented navigation satellite system using piggyback launches

Loading next page...
 
/lp/springer-journals/integrated-constellation-design-and-deployment-method-for-a-regional-VCfmqY91nP
Publisher
Springer Journals
Copyright
Copyright © Tsinghua University Press 2020
ISSN
2522-008X
eISSN
2522-0098
DOI
10.1007/s42064-020-0091-8
Publisher site
See Article on Publisher Site

Abstract

The method proposed in this paper is adopted to solve problem B of the 9th China Trajectory Optimization Competition (CTOC). An accurate and economical constellation design strategy for regional augmented navigation satellite systems (RANSSs) has attracted a substantial amount of research interest owing to the increased demand for navigation services in complex environments. This paper proposes a hybrid method of constellation design and deployment for a RANSS to satisfy the navigation performance requirements and minimize the construction cost. First, the search spaces of the design parameters are determined by analyzing the orbital parameters of piggyback launches. Second, the constellation is designed as a combined Walker constellation and optimized by a differential evolution (DE) algorithm. Finally, optimal strategies for deploying satellites to the desired orbits are obtained using a transfer optimization design. The method was adopted to design a RANSS for servicing the 182 cities in the Asia-Pacific region. The configuration consists of five orbital planes and 80 navigation satellites and achieves a low construction cost with 10 piggyback launches. Furthermore, the constellation can cooperate with an existing navigation satellite system to further improve the navigation accuracy for all cities. The results reveal that the RANSS design and deployment problem can be effectively solved with a low construction cost and high navigation performance.

Journal

AstrodynamicsSpringer Journals

Published: Dec 28, 2020

There are no references for this article.