Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Influence of Lampang pottery stone: local materials in Thailand on C-Q-F ratio, key properties, mullite formation and glaze-body fit of vitreous ceramic sanitary ware

Influence of Lampang pottery stone: local materials in Thailand on C-Q-F ratio, key properties,... This study was aimed to investigate the key properties, mullite formation and glaze-body fit of sanitary ware bodies, by using pottery stone from Lampang, Thailand as a substitute for kaolin, feldspar, and silica. Seven samples of formulated bodies were prepared by wet milling, formed by plaster mold casting, and fired at 1175 °C, 1200 °C, and 1225 °C. Testings were carried out in accordance with ASTM C373-88, ASTM C326-09, ASTM C689-09, and ASTM C372-94. Phase analysis and microstructure of selected formulations were analyzed by using XRD and SEM. For the formulation having 37.7-20.7-41.6 of C-Q-F ratio and pottery stone in substitute for 100% silica, after firing at 1200 °C showed 9.27% total shrinkage, 0.17% water absorption, and 60 MPa flexure stress. The crystal structure resulted in higher amount of mullite. The linear thermal expansion and thermal expansion coefficient were lower to 0.34 and 7.07 × 10−6/°C, respectively. The difference of linear thermal expansion between the formulated body and commercial white-opaque glaze was − 0.02 at 500 °C. The shrinkage difference of body and glaze showed that the glaze-body fit was under slightly amount of compression. As a result, the formulation with the substitute for 100% silica could be vitrificated at lower temperature and indicated positive trends towards lower dunting during firing. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Australian Ceramic Society Springer Journals

Influence of Lampang pottery stone: local materials in Thailand on C-Q-F ratio, key properties, mullite formation and glaze-body fit of vitreous ceramic sanitary ware

Loading next page...
 
/lp/springer-journals/influence-of-lampang-pottery-stone-local-materials-in-thailand-on-c-q-OAMjRuqbng

References (20)

Publisher
Springer Journals
Copyright
Copyright © 2019 by Australian Ceramic Society
Subject
Materials Science; Ceramics, Glass, Composites, Natural Materials; Materials Engineering; Inorganic Chemistry
ISSN
2510-1560
eISSN
2510-1579
DOI
10.1007/s41779-019-00331-9
Publisher site
See Article on Publisher Site

Abstract

This study was aimed to investigate the key properties, mullite formation and glaze-body fit of sanitary ware bodies, by using pottery stone from Lampang, Thailand as a substitute for kaolin, feldspar, and silica. Seven samples of formulated bodies were prepared by wet milling, formed by plaster mold casting, and fired at 1175 °C, 1200 °C, and 1225 °C. Testings were carried out in accordance with ASTM C373-88, ASTM C326-09, ASTM C689-09, and ASTM C372-94. Phase analysis and microstructure of selected formulations were analyzed by using XRD and SEM. For the formulation having 37.7-20.7-41.6 of C-Q-F ratio and pottery stone in substitute for 100% silica, after firing at 1200 °C showed 9.27% total shrinkage, 0.17% water absorption, and 60 MPa flexure stress. The crystal structure resulted in higher amount of mullite. The linear thermal expansion and thermal expansion coefficient were lower to 0.34 and 7.07 × 10−6/°C, respectively. The difference of linear thermal expansion between the formulated body and commercial white-opaque glaze was − 0.02 at 500 °C. The shrinkage difference of body and glaze showed that the glaze-body fit was under slightly amount of compression. As a result, the formulation with the substitute for 100% silica could be vitrificated at lower temperature and indicated positive trends towards lower dunting during firing.

Journal

Journal of the Australian Ceramic SocietySpringer Journals

Published: Feb 15, 2019

There are no references for this article.