# Infinite order linear differential equation satisfied by p-adic Hurwitz-type Euler zeta functions

Infinite order linear differential equation satisfied by p-adic Hurwitz-type Euler zeta functions In 1900, at the international congress of mathematicians, Hilbert claimed that the Riemann zeta function ζ(s)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta (s)$$\end{document} is not the solution of any algebraic ordinary differential equations on its region of analyticity. In 2015, Van Gorder (J Number Theory 147:778–788, 2015) considered the question of whether ζ(s)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta (s)$$\end{document} satisfies a non-algebraic differential equation and showed that it formally satisfies an infinite order linear differential equation. Recently, Prado and Klinger-Logan (J Number Theory 217:422–442, 2020) extended Van Gorder’s result to show that the Hurwitz zeta function ζ(s,a)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta (s,a)$$\end{document} is also formally satisfies a similar differential equation Tζ(s,a)-1as=1(s-1)as-1.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{aligned} T\left[ \zeta (s,a) - \frac{1}{a^s}\right] = \frac{1}{(s-1)a^{s-1}}. \end{aligned}\end{document}But unfortunately in the same paper they proved that the operator T applied to Hurwitz zeta function ζ(s,a)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta (s,a)$$\end{document} does not converge at any point in the complex plane C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {C}}$$\end{document}. In this paper, by defining Tpa\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$T_{p}^{a}$$\end{document}, a p-adic analogue of Van Gorder’s operator T,  we establish an analogue of Prado and Klinger-Logan’s differential equation satisfied by ζp,E(s,a)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta _{p,E}(s,a)$$\end{document} which is the p-adic analogue of the Hurwitz-type Euler zeta functions ζE(s,a)=∑n=0∞(-1)n(n+a)s.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{aligned} \zeta _E(s,a)=\sum _{n=0}^\infty \frac{(-1)^n}{(n+a)^s}. \end{aligned}\end{document}In contrast with the complex case, due to the non-archimedean property, the operator Tpa\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$T_{p}^{a}$$\end{document} applied to the p-adic Hurwitz-type Euler zeta function ζp,E(s,a)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta _{p,E}(s,a)$$\end{document} is convergent p-adically in the area of s∈Zp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s\in {\mathbb {Z}}_{p}$$\end{document} with s≠1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s\ne 1$$\end{document} and a∈K\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a\in K$$\end{document} with |a|p>1,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|a|_{p}>1,$$\end{document} where K is any finite extension of Qp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Q}}_{p}$$\end{document} with ramification index over Qp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Q}}_{p}$$\end{document} less than p-1.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p-1.$$\end{document} http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Springer Journals

# Infinite order linear differential equation satisfied by p-adic Hurwitz-type Euler zeta functions

, Volume 91 (1) – Apr 1, 2021
19 pages

Publisher
Springer Journals
Copyright © The Author(s), under exclusive licence to Mathematisches Seminar der Universität Hamburg 2021
ISSN
0025-5858
eISSN
1865-8784
DOI
10.1007/s12188-021-00234-2
Publisher site
See Article on Publisher Site

### Abstract

In 1900, at the international congress of mathematicians, Hilbert claimed that the Riemann zeta function ζ(s)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta (s)$$\end{document} is not the solution of any algebraic ordinary differential equations on its region of analyticity. In 2015, Van Gorder (J Number Theory 147:778–788, 2015) considered the question of whether ζ(s)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta (s)$$\end{document} satisfies a non-algebraic differential equation and showed that it formally satisfies an infinite order linear differential equation. Recently, Prado and Klinger-Logan (J Number Theory 217:422–442, 2020) extended Van Gorder’s result to show that the Hurwitz zeta function ζ(s,a)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta (s,a)$$\end{document} is also formally satisfies a similar differential equation Tζ(s,a)-1as=1(s-1)as-1.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{aligned} T\left[ \zeta (s,a) - \frac{1}{a^s}\right] = \frac{1}{(s-1)a^{s-1}}. \end{aligned}\end{document}But unfortunately in the same paper they proved that the operator T applied to Hurwitz zeta function ζ(s,a)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta (s,a)$$\end{document} does not converge at any point in the complex plane C\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {C}}$$\end{document}. In this paper, by defining Tpa\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$T_{p}^{a}$$\end{document}, a p-adic analogue of Van Gorder’s operator T,  we establish an analogue of Prado and Klinger-Logan’s differential equation satisfied by ζp,E(s,a)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta _{p,E}(s,a)$$\end{document} which is the p-adic analogue of the Hurwitz-type Euler zeta functions ζE(s,a)=∑n=0∞(-1)n(n+a)s.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{aligned} \zeta _E(s,a)=\sum _{n=0}^\infty \frac{(-1)^n}{(n+a)^s}. \end{aligned}\end{document}In contrast with the complex case, due to the non-archimedean property, the operator Tpa\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$T_{p}^{a}$$\end{document} applied to the p-adic Hurwitz-type Euler zeta function ζp,E(s,a)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\zeta _{p,E}(s,a)$$\end{document} is convergent p-adically in the area of s∈Zp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s\in {\mathbb {Z}}_{p}$$\end{document} with s≠1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$s\ne 1$$\end{document} and a∈K\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a\in K$$\end{document} with |a|p>1,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|a|_{p}>1,$$\end{document} where K is any finite extension of Qp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Q}}_{p}$$\end{document} with ramification index over Qp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {Q}}_{p}$$\end{document} less than p-1.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p-1.$$\end{document}

### Journal

Abhandlungen aus dem Mathematischen Seminar der Universität HamburgSpringer Journals

Published: Apr 1, 2021

Keywords: p-adic Hurwitz-type Euler zeta function; Differential equation; 11M35; 11B68