Access the full text.
Sign up today, get DeepDyve free for 14 days.
Dyson’s rank function and the Andrews–Garvan crank function famously give combinatorial witnesses for Ramanujan’s partition function congruences modulo 5, 7, and 11. While these functions can be used to show that the corresponding sets of partitions split into 5, 7, or 11 equally sized sets, one may ask how to make the resulting bijections between partitions organized by rank or crank combinatorially explicit. Stanton recently made conjectures which aim to uncover a deeper combinatorial structure along these lines, where it turns out that minor modifications of the rank and crank are required. Here, we prove two of these conjectures. We also provide abstract criteria for quotients of polynomials by certain cyclotomic polynomials to have non-negative coefficients based on unimodality and symmetry. Furthermore, we extend Stanton’s conjecture to an infinite family of cranks. This suggests further applications to other combinatorial objects. We also discuss numerical evidence for our conjectures, connections with other analytic conjectures such as the distribution of partition ranks.
Research in the Mathematical Sciences – Springer Journals
Published: Sep 1, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.