# Inequalities for Generalized Grötzsch Ring Function

Inequalities for Generalized Grötzsch Ring Function In this paper, we deal with the generalized Grötzsch ring function μa(r)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu _a(r)$$\end{document} for r∈(0,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r\in (0,1)$$\end{document} in the theory of the Ramanujan generalized modular equation and present new inequalities for μa(r)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu _a(r)$$\end{document}. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

# Inequalities for Generalized Grötzsch Ring Function

, Volume 22 (3): 16 – Sep 1, 2022
16 pages

/lp/springer-journals/inequalities-for-generalized-gr-tzsch-ring-function-btF4OMTzcB
Publisher
Springer Journals
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/s40315-021-00415-3
Publisher site
See Article on Publisher Site

### Abstract

In this paper, we deal with the generalized Grötzsch ring function μa(r)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu _a(r)$$\end{document} for r∈(0,1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$r\in (0,1)$$\end{document} in the theory of the Ramanujan generalized modular equation and present new inequalities for μa(r)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu _a(r)$$\end{document}.

### Journal

Computational Methods and Function TheorySpringer Journals

Published: Sep 1, 2022

Keywords: Modular equation; Generalized elliptic integrals; Generalized Grötzsch ring function; Geometric function theory; 33E05; 33C05

### References

Access the full text.

Sign up today, get DeepDyve free for 14 days.