Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

In-water gas combustion for thrust production

In-water gas combustion for thrust production Abstract The paper presents the results of experimental study for hydrodynamic processes occurring during combustion of a stoichiometric mixture propane-oxygen in combustion chambers with different configurations and submerged into water. The pulses of force acting upon a thrust wall were measured for different geometries: cylindrical, conic, hemispherical, including the case of gas combustion near a flat thrust wall. After a single charge of stoichiometric mixture propane-oxygen is burnt near the thrust wall, the process of cyclic generation of force pulses develops. The first pulse is generated due to pressure growth during gas combustion, and the following pulses are the result of hydrodynamic pulsations of the gaseous cavity. Experiments demonstrated that efficient generation of thrust occurs if all bubble pulsations are used during combustion of a single gas combustion. In the series of experiments, the specific impulse on the thrust wall was in the range 104–105 s (105–106 m/s) with account for positive and negative components of impulse. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Thermophysics and Aeromechanics Springer Journals

In-water gas combustion for thrust production

Loading next page...
 
/lp/springer-journals/in-water-gas-combustion-for-thrust-production-kWxpUkoZtN
Publisher
Springer Journals
Copyright
2017 Pleiades Publishing, Ltd.
ISSN
0869-8643
eISSN
1531-8699
DOI
10.1134/S0869864317040102
Publisher site
See Article on Publisher Site

Abstract

Abstract The paper presents the results of experimental study for hydrodynamic processes occurring during combustion of a stoichiometric mixture propane-oxygen in combustion chambers with different configurations and submerged into water. The pulses of force acting upon a thrust wall were measured for different geometries: cylindrical, conic, hemispherical, including the case of gas combustion near a flat thrust wall. After a single charge of stoichiometric mixture propane-oxygen is burnt near the thrust wall, the process of cyclic generation of force pulses develops. The first pulse is generated due to pressure growth during gas combustion, and the following pulses are the result of hydrodynamic pulsations of the gaseous cavity. Experiments demonstrated that efficient generation of thrust occurs if all bubble pulsations are used during combustion of a single gas combustion. In the series of experiments, the specific impulse on the thrust wall was in the range 104–105 s (105–106 m/s) with account for positive and negative components of impulse.

Journal

Thermophysics and AeromechanicsSpringer Journals

Published: Jul 1, 2017

References