Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Improved weighted additive spanners

Improved weighted additive spanners Graph spanners and emulators are sparse structures that approximately preserve distances of the original graph. While there has been an extensive amount of work on additive spanners, so far little attention was given to weighted graphs. Only very recently as reported by Ahmed et al. (in: Adler I, Müller H (eds) Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK). extended the classical +2 (respectively, +4) spanners for unweighted graphs of size O(n3/2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{3/2})$$\end{document} (resp., O(n7/5)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{7/5})$$\end{document}) to the weighted setting, where the additive error is +2W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+2W$$\end{document} (resp., +4W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+4W$$\end{document}). This means that for every pair u, v, the additive stretch is at most +2Wu,v\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+2W_{u,v}$$\end{document}, where Wu,v\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{u,v}$$\end{document} is the maximal edge weight on the shortest u-v\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$u-v$$\end{document} path (weights are normalized so that the minimum edge weight is 1). In addition, as reported by Ahmed et al. (in: Adler I, Müller H (eds) Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK). showed a randomized algorithm yielding a +8Wmax\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+8W_{max}$$\end{document} spanner of size O(n4/3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{4/3})$$\end{document}, here Wmax\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{max}$$\end{document} is the maximum edge weight in the entire graph. In this work we improve the latter result by devising a simple deterministic algorithm for a +(6+ε)W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+(6+\varepsilon )W$$\end{document} spanner for weighted graphs with size O(n4/3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{4/3})$$\end{document} (for any constant ε>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon >0$$\end{document}), thus nearly matching the classical +6 spanner of size O(n4/3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{4/3})$$\end{document} for unweighted graphs. Furthermore, we show a +(2+ε)W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+(2+\varepsilon )W$$\end{document} subsetwise spanner of size O(n·|S|)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n\cdot \sqrt{\vert S\vert })$$\end{document}, improving the +4Wmax\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+4W_{max}$$\end{document} result of as reported by Ahmed et al. (in: Adler I, Müller H (eds) Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK). (that had the same size). We also show a simple randomized algorithm for a +4W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+4W$$\end{document} emulator of size O~(n4/3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\tilde{O}}(n^{4/3})$$\end{document}. In addition, we show that our technique is applicable for very sparse additive spanners, that have linear size. It was proved by Abboud A, Bodwin G (J ACM 64(4):28–12820 2017) that such spanners must suffer polynomially large stretches. For weighted graphs, we use a variant of our simple deterministic algorithm that yields a linear size +O~(n·W)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+{\tilde{O}}(\sqrt{n}\cdot W)$$\end{document} spanner, and we also obtain a tradeoff between size and stretch. Finally, generalizing the technique of Dor D et al. (SIAM J Comput 29:1740–1759, 2000) for unweighted graphs, we devise an efficient randomized algorithm producing a +2W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+2W$$\end{document} spanner for weighted graphs of size O~(n3/2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\tilde{O}}(n^{3/2})$$\end{document} in O~(n2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\tilde{O}}(n^2)$$\end{document} time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Distributed Computing Springer Journals

Improved weighted additive spanners

Distributed Computing , Volume OnlineFirst – Aug 4, 2022

Loading next page...
 
/lp/springer-journals/improved-weighted-additive-spanners-FO7N4m01RF
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0178-2770
eISSN
1432-0452
DOI
10.1007/s00446-022-00433-x
Publisher site
See Article on Publisher Site

Abstract

Graph spanners and emulators are sparse structures that approximately preserve distances of the original graph. While there has been an extensive amount of work on additive spanners, so far little attention was given to weighted graphs. Only very recently as reported by Ahmed et al. (in: Adler I, Müller H (eds) Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK). extended the classical +2 (respectively, +4) spanners for unweighted graphs of size O(n3/2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{3/2})$$\end{document} (resp., O(n7/5)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{7/5})$$\end{document}) to the weighted setting, where the additive error is +2W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+2W$$\end{document} (resp., +4W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+4W$$\end{document}). This means that for every pair u, v, the additive stretch is at most +2Wu,v\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+2W_{u,v}$$\end{document}, where Wu,v\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{u,v}$$\end{document} is the maximal edge weight on the shortest u-v\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$u-v$$\end{document} path (weights are normalized so that the minimum edge weight is 1). In addition, as reported by Ahmed et al. (in: Adler I, Müller H (eds) Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK). showed a randomized algorithm yielding a +8Wmax\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+8W_{max}$$\end{document} spanner of size O(n4/3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{4/3})$$\end{document}, here Wmax\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$W_{max}$$\end{document} is the maximum edge weight in the entire graph. In this work we improve the latter result by devising a simple deterministic algorithm for a +(6+ε)W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+(6+\varepsilon )W$$\end{document} spanner for weighted graphs with size O(n4/3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{4/3})$$\end{document} (for any constant ε>0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon >0$$\end{document}), thus nearly matching the classical +6 spanner of size O(n4/3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n^{4/3})$$\end{document} for unweighted graphs. Furthermore, we show a +(2+ε)W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+(2+\varepsilon )W$$\end{document} subsetwise spanner of size O(n·|S|)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(n\cdot \sqrt{\vert S\vert })$$\end{document}, improving the +4Wmax\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+4W_{max}$$\end{document} result of as reported by Ahmed et al. (in: Adler I, Müller H (eds) Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Leeds, UK). (that had the same size). We also show a simple randomized algorithm for a +4W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+4W$$\end{document} emulator of size O~(n4/3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\tilde{O}}(n^{4/3})$$\end{document}. In addition, we show that our technique is applicable for very sparse additive spanners, that have linear size. It was proved by Abboud A, Bodwin G (J ACM 64(4):28–12820 2017) that such spanners must suffer polynomially large stretches. For weighted graphs, we use a variant of our simple deterministic algorithm that yields a linear size +O~(n·W)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+{\tilde{O}}(\sqrt{n}\cdot W)$$\end{document} spanner, and we also obtain a tradeoff between size and stretch. Finally, generalizing the technique of Dor D et al. (SIAM J Comput 29:1740–1759, 2000) for unweighted graphs, we devise an efficient randomized algorithm producing a +2W\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$+2W$$\end{document} spanner for weighted graphs of size O~(n3/2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\tilde{O}}(n^{3/2})$$\end{document} in O~(n2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\tilde{O}}(n^2)$$\end{document} time.

Journal

Distributed ComputingSpringer Journals

Published: Aug 4, 2022

Keywords: Graph theory; Pure additive spanners

References