Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Impact of radiation pressure and circumstellar dust on motion of a test particle in Manev’s field

Impact of radiation pressure and circumstellar dust on motion of a test particle in Manev’s field In this paper, we present a study on the impact of radiation pressure and circumstellar dust on the motion of a test particle in the framework of the restricted four-body problem under the Manev’s field. We show that the distribution of equilibrium points on the plane of motion is slightly different from that of the classical Newtonian problem. With the aid of the Lyapunov characteristic exponents, we show that the system is sensitive to changes in initial conditions; hence, the orbit of the system is found to be chaotic in the phase space for the given initial conditions. Furthermore, a numerical application of this model to a stellar system (Gliese 667C) is considered, which validates the dependence of the equilibrium points on the mass parameter. We show that the non-collinear equilibrium points of this stellar system are distributed symmetrically about the x-axis, and five of them are linearly stable. The basins of attraction of the system show that the equilibrium points have irregular boundaries, and we use the energy integral and the Manev parameter to illustrate the zero-velocity curves showing the permissible region of motion of the test particle with respect to the Jacobi constant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Astrodynamics Springer Journals

Impact of radiation pressure and circumstellar dust on motion of a test particle in Manev’s field

Loading next page...
 
/lp/springer-journals/impact-of-radiation-pressure-and-circumstellar-dust-on-motion-of-a-264XEnNEzI
Publisher
Springer Journals
Copyright
Copyright © Tsinghua University Press 2020
ISSN
2522-008X
eISSN
2522-0098
DOI
10.1007/s42064-020-0071-z
Publisher site
See Article on Publisher Site

Abstract

In this paper, we present a study on the impact of radiation pressure and circumstellar dust on the motion of a test particle in the framework of the restricted four-body problem under the Manev’s field. We show that the distribution of equilibrium points on the plane of motion is slightly different from that of the classical Newtonian problem. With the aid of the Lyapunov characteristic exponents, we show that the system is sensitive to changes in initial conditions; hence, the orbit of the system is found to be chaotic in the phase space for the given initial conditions. Furthermore, a numerical application of this model to a stellar system (Gliese 667C) is considered, which validates the dependence of the equilibrium points on the mass parameter. We show that the non-collinear equilibrium points of this stellar system are distributed symmetrically about the x-axis, and five of them are linearly stable. The basins of attraction of the system show that the equilibrium points have irregular boundaries, and we use the energy integral and the Manev parameter to illustrate the zero-velocity curves showing the permissible region of motion of the test particle with respect to the Jacobi constant.

Journal

AstrodynamicsSpringer Journals

Published: Nov 7, 2020

There are no references for this article.