Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Imaging phenotypes and genotypes in schizophrenia

Imaging phenotypes and genotypes in schizophrenia Schizophrenia is associated with subtle structural and functional brain abnormalities. Both recent and classical data suggest that it is a heterogeneous disorder that is clearly heritable. The cause and course of schizophrenia are poorly understood, and classical categories of clinical symptoms have not been particularly useful in identifying its pathophysiology or predicting its treatment. The possible genetic risk factors for schizophrenia are numerous; however, the connection between the genotype and the time-course, or the multifaceted symptoms of the disease, has yet to be established. Brain imaging methods that study the structure or function of the cortical and subcortical regions have also identified distinct patterns that distinguish schizophrenics from controls, and that may identify meaningful subtypes of schizophrenia. The predictive relationship between these imaging phenotypes and disease characteristics such as treatment response is only beginning to be revealed. The emergence of the field of imaging genetics, combining genetic, and neuroimaging data, holds much promise for the deeper understanding and improved treatment of diseases such as schizophrenia. In this article we review some of the key findings in imaging phenotyping and genotyping of schizophrenia, and the initial endeavors at their combination into more meaningful and predictive patterns, or endophenotypes identifying the relationships among clinical symptoms, course, genes, and the underlying pathophysiology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

Loading next page...
 
/lp/springer-journals/imaging-phenotypes-and-genotypes-in-schizophrenia-r8xUpMUkk4
Publisher
Springer Journals
Copyright
Copyright © 2006 by Humana Press Inc
Subject
Chemistry; Biotechnology; Engineering, general; Neurology
ISSN
1539-2791
eISSN
1559-0089
DOI
10.1385/NI:4:1:21
pmid
16595857
Publisher site
See Article on Publisher Site

Abstract

Schizophrenia is associated with subtle structural and functional brain abnormalities. Both recent and classical data suggest that it is a heterogeneous disorder that is clearly heritable. The cause and course of schizophrenia are poorly understood, and classical categories of clinical symptoms have not been particularly useful in identifying its pathophysiology or predicting its treatment. The possible genetic risk factors for schizophrenia are numerous; however, the connection between the genotype and the time-course, or the multifaceted symptoms of the disease, has yet to be established. Brain imaging methods that study the structure or function of the cortical and subcortical regions have also identified distinct patterns that distinguish schizophrenics from controls, and that may identify meaningful subtypes of schizophrenia. The predictive relationship between these imaging phenotypes and disease characteristics such as treatment response is only beginning to be revealed. The emergence of the field of imaging genetics, combining genetic, and neuroimaging data, holds much promise for the deeper understanding and improved treatment of diseases such as schizophrenia. In this article we review some of the key findings in imaging phenotyping and genotyping of schizophrenia, and the initial endeavors at their combination into more meaningful and predictive patterns, or endophenotypes identifying the relationships among clinical symptoms, course, genes, and the underlying pathophysiology.

Journal

NeuroinformaticsSpringer Journals

Published: Apr 11, 2007

References