Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Highly Antibacterial Efficacy of a Cotton Fabric Treated with Piperazinyl Schiff Base

Highly Antibacterial Efficacy of a Cotton Fabric Treated with Piperazinyl Schiff Base Due to the structure of hierarchical aligned cellulose fibrils, cotton fabric used in clothing possesses excellent moisture and thermal managements. Such structure yet may retain metabolic excrements and sebum secretions discharged from the human skin, which reproduce microorganisms harmful for human health. However, incorporating the antimicrobial coating into the cotton fabric can sufficiently resist the microorganism growth. In this work, a water-soluble antibacterial coating named N-(4-(allyloxy) benzylidene)-2-(piperazin-1-yl) ethanamine (NABPE) was synthesized to produce a rechargeable and fast sterilization cotton fiber fabric (M-cotton/NABPE). M-cotton/NABPE exhibited a high effective antibacterial activity, and the inhibition ratios against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 94 % and 93 %, respectively. Chlorination was performed with sodium hypochlorite solution to form N-Cl bond on the M-cotton/NABPE fabrics, resulting in a high biocidal efficacy of up to 100 % via contact killing for a duration of 5 min. After 25 washing cycles, the antibacterial fabric still maintained an antibacterial rate of 91.95 % and 92.15 % against E. coli and S. aureus, respectively. Furthermore, the fabrics showed integrated properties of excellent UV stability, long-term stability, robust rechargeable biocidal activity (chlorine recharging >5000 ppm) and washing durability. This research provides fundamental insights into the synthesis of the NABPE and prolonged biocidal efficacy of the M-cotton/NABPE, and thereby pave a pathway to incorporate an economic and environmental-friendly antibacterial coating suitable for finishing cotton fabric. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Highly Antibacterial Efficacy of a Cotton Fabric Treated with Piperazinyl Schiff Base

Loading next page...
 
/lp/springer-journals/highly-antibacterial-efficacy-of-a-cotton-fabric-treated-with-eSuqY0abKM

References (39)

Publisher
Springer Journals
Copyright
Copyright © The Korean Fiber Society for Fibers and Polymers and Springer 2021
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-021-0191-y
Publisher site
See Article on Publisher Site

Abstract

Due to the structure of hierarchical aligned cellulose fibrils, cotton fabric used in clothing possesses excellent moisture and thermal managements. Such structure yet may retain metabolic excrements and sebum secretions discharged from the human skin, which reproduce microorganisms harmful for human health. However, incorporating the antimicrobial coating into the cotton fabric can sufficiently resist the microorganism growth. In this work, a water-soluble antibacterial coating named N-(4-(allyloxy) benzylidene)-2-(piperazin-1-yl) ethanamine (NABPE) was synthesized to produce a rechargeable and fast sterilization cotton fiber fabric (M-cotton/NABPE). M-cotton/NABPE exhibited a high effective antibacterial activity, and the inhibition ratios against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 94 % and 93 %, respectively. Chlorination was performed with sodium hypochlorite solution to form N-Cl bond on the M-cotton/NABPE fabrics, resulting in a high biocidal efficacy of up to 100 % via contact killing for a duration of 5 min. After 25 washing cycles, the antibacterial fabric still maintained an antibacterial rate of 91.95 % and 92.15 % against E. coli and S. aureus, respectively. Furthermore, the fabrics showed integrated properties of excellent UV stability, long-term stability, robust rechargeable biocidal activity (chlorine recharging >5000 ppm) and washing durability. This research provides fundamental insights into the synthesis of the NABPE and prolonged biocidal efficacy of the M-cotton/NABPE, and thereby pave a pathway to incorporate an economic and environmental-friendly antibacterial coating suitable for finishing cotton fabric.

Journal

Fibers and PolymersSpringer Journals

Published: Dec 1, 2021

Keywords: Cotton fabric; Piperazinyl schiff base; Antibacterial performance; Rechargeable; Stability

There are no references for this article.