Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Heat transfer peculiarities in separated flow past an oblique rib under different external turbulence

Heat transfer peculiarities in separated flow past an oblique rib under different external... Abstract Results of an experimental study of turbulent flow past a flat rib installed at an angle to the free-stream direction are reported. In the experiments, external flows with two different turbulence numbers were used, and the angle of rib inclination to the free stream was varied from 50 to 90°. The experiments were performed for ribs of various heights under conditions with natural and high (13.4 %) free-stream turbulence levels. Visualization tests were performed to elucidate the vortex formation pattern and the direction of flow streamlines. Deformations of the recirculation region and secondary-vortex zone as well as enhanced effects due to 3D flow structure observed on decreasing the angle ϕ, and also notable restructuring of the flow at a high free-stream turbulence intensity, were identified. A comparison between pressure coefficients in different longitudinal sections of the channel is reported for ribs of various heights installed at various angles ϕ. The influence of rib inclination angle, rib height, and free-stream turbulence number on local heat-transfer coefficients and heat-transfer intensification is analysed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Thermophysics and Aeromechanics Springer Journals

Heat transfer peculiarities in separated flow past an oblique rib under different external turbulence

Loading next page...
 
/lp/springer-journals/heat-transfer-peculiarities-in-separated-flow-past-an-oblique-rib-w9e2p0iY56
Publisher
Springer Journals
Copyright
2008 Pleiades Publishing, Ltd.
ISSN
0869-8643
eISSN
1531-8699
DOI
10.1134/S0869864308020042
Publisher site
See Article on Publisher Site

Abstract

Abstract Results of an experimental study of turbulent flow past a flat rib installed at an angle to the free-stream direction are reported. In the experiments, external flows with two different turbulence numbers were used, and the angle of rib inclination to the free stream was varied from 50 to 90°. The experiments were performed for ribs of various heights under conditions with natural and high (13.4 %) free-stream turbulence levels. Visualization tests were performed to elucidate the vortex formation pattern and the direction of flow streamlines. Deformations of the recirculation region and secondary-vortex zone as well as enhanced effects due to 3D flow structure observed on decreasing the angle ϕ, and also notable restructuring of the flow at a high free-stream turbulence intensity, were identified. A comparison between pressure coefficients in different longitudinal sections of the channel is reported for ribs of various heights installed at various angles ϕ. The influence of rib inclination angle, rib height, and free-stream turbulence number on local heat-transfer coefficients and heat-transfer intensification is analysed.

Journal

Thermophysics and AeromechanicsSpringer Journals

Published: Jun 1, 2008

References