Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

HeartNetEC: a deep representation learning approach for ECG beat classification

HeartNetEC: a deep representation learning approach for ECG beat classification One of the most crucial and informative tools available at the disposal of a Cardiologist for examining the condition of a patient’s cardiovascular system is the electrocardiogram (ECG/EKG). A major reason behind the need for accurate reconstruction of ECG comes from the fact that the shape of ECG tracing is very crucial for determining the health condition of an individual. Whether the patient is prone to or diagnosed with cardiovascular diseases (CVDs), this information can be gathered through examination of ECG signal. Among various other methods, one of the most helpful methods in identifying cardiac abnormalities is a beat-wise categorization of a patient’s ECG record. In this work, a highly efficient deep representation learning approach for ECG beat classification is proposed, which can significantly reduce the burden and time spent by a Cardiologist for ECG Analysis. This work consists of two sub-systems: denoising block and beat classification block. The initial block is a denoising block that acquires the ECG signal from the patient and denoises that. The next stage is the beat classification part. This processes the input ECG signal for finding out the different classes of beats in the ECG through an efficient algorithm. In both stages, deep learning-based methods have been employed for the purpose. Our proposed approach has been tested on PhysioNet’s MIT-BIH Arrhythmia Database, for beat-wise classification into ten important types of heartbeats. As per the results obtained, the proposed approach is capable of making meaningful predictions and gives superior results on relevant metrics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Engineering Letters Springer Journals

HeartNetEC: a deep representation learning approach for ECG beat classification

Loading next page...
 
/lp/springer-journals/heartnetec-a-deep-representation-learning-approach-for-ecg-beat-QM430IsrCU

References (18)

Publisher
Springer Journals
Copyright
Copyright © Korean Society of Medical and Biological Engineering 2021
ISSN
2093-9868
eISSN
2093-985X
DOI
10.1007/s13534-021-00184-x
Publisher site
See Article on Publisher Site

Abstract

One of the most crucial and informative tools available at the disposal of a Cardiologist for examining the condition of a patient’s cardiovascular system is the electrocardiogram (ECG/EKG). A major reason behind the need for accurate reconstruction of ECG comes from the fact that the shape of ECG tracing is very crucial for determining the health condition of an individual. Whether the patient is prone to or diagnosed with cardiovascular diseases (CVDs), this information can be gathered through examination of ECG signal. Among various other methods, one of the most helpful methods in identifying cardiac abnormalities is a beat-wise categorization of a patient’s ECG record. In this work, a highly efficient deep representation learning approach for ECG beat classification is proposed, which can significantly reduce the burden and time spent by a Cardiologist for ECG Analysis. This work consists of two sub-systems: denoising block and beat classification block. The initial block is a denoising block that acquires the ECG signal from the patient and denoises that. The next stage is the beat classification part. This processes the input ECG signal for finding out the different classes of beats in the ECG through an efficient algorithm. In both stages, deep learning-based methods have been employed for the purpose. Our proposed approach has been tested on PhysioNet’s MIT-BIH Arrhythmia Database, for beat-wise classification into ten important types of heartbeats. As per the results obtained, the proposed approach is capable of making meaningful predictions and gives superior results on relevant metrics.

Journal

Biomedical Engineering LettersSpringer Journals

Published: Feb 8, 2021

There are no references for this article.