Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper, we study the Cauchy problem for the 3D generalized Navier-Stokes-Boussinesq equations with fractional diffusion: $$\left\{ {\begin{array}{*{20}{c}}{{u_t} + \left( {u \cdot \nabla } \right)u + v{\Lambda ^{2a}}u = -\nabla p + \theta {e_3},\;{e_3} = {{\left( {0,0,1} \right)}^T},} \\ {{\theta _t} + \left( {u \cdot \nabla } \right)t = 0,} \\ {Divu = 0.} \end{array}} \right.$$ With the help of the smoothing effect of the fractional diffusion operator and a logarithmic estimate, we prove the global well-posedness for this system with α ≥ 5/4. Moreover, the uniqueness and continuity of the solution with weaker initial data is based on Fourier localization technique. Our results extend ones on the 3D Navier-Stokes equations with fractional diffusion.
Acta Mathematicae Applicatae Sinica – Springer Journals
Published: Apr 5, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.