Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Pineapple

Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in... NAC [no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2) and cup-shaped cotyledon (CUC2)] proteins is one of the largest classes of plant specific transcription factors and plays a critical role in plant growth, development process, and abiotic/biotic stresses. In this study, 73 NAC genes (AcNACs) were identified from the pineapple genome. Phylogenetic analysis showed that AcNACs could be divided into 13 subgroups. Gene structure analysis showed that the number of introns varied from 0 to 12. Motif analysis revealed that all of the identified AcNACs had the conserved NAC domain and motif 6 is the conserved motif. Most of the AcNACs were located in chromosome except AcNAC68, AcNAC70, AcNAC71 and AcNAC72, which were presented on unanchored scaffolds. Furthermore, we analysed AcNAC expression patterns in vegetative organs and in sexual organs, namely ovules and stamens, at different developmental stages respectively. Five AcNAC genes (AcNAC6; AcNAC7; AcNAC48; AcNAC70; AcNAC71) were not detected in vegetative organs. AcNAC55 exhibited the highest expression level in vegetative organs. Six AcNAC genes (AcNAC11, AcNAC18, AcNAC27, AcNAC28, AcNAC40, and AcNAC55) showed high expression levels in all reproductive organs. Seven AcNAC genes (AcNAC26, AcNAC34, AcNAC40, AcNAC43, AcNAC63 and AcNAC65) were induced under abiotic stresses. These data provided a new insight of NAC gene family in pineapple and revealed the diverse function of NAC transcription factors in pineapple growth and development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tropical Plant Biology Springer Journals

Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Pineapple

Loading next page...
 
/lp/springer-journals/genome-wide-identification-and-expression-analysis-of-the-nac-GT0sF6TlqG
Publisher
Springer Journals
Copyright
Copyright © 2019 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Life Sciences; Plant Sciences; Plant Genetics and Genomics; Plant Breeding/Biotechnology; Plant Ecology; Transgenics
ISSN
1935-9756
eISSN
1935-9764
DOI
10.1007/s12042-019-09233-3
Publisher site
See Article on Publisher Site

Abstract

NAC [no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF1/2) and cup-shaped cotyledon (CUC2)] proteins is one of the largest classes of plant specific transcription factors and plays a critical role in plant growth, development process, and abiotic/biotic stresses. In this study, 73 NAC genes (AcNACs) were identified from the pineapple genome. Phylogenetic analysis showed that AcNACs could be divided into 13 subgroups. Gene structure analysis showed that the number of introns varied from 0 to 12. Motif analysis revealed that all of the identified AcNACs had the conserved NAC domain and motif 6 is the conserved motif. Most of the AcNACs were located in chromosome except AcNAC68, AcNAC70, AcNAC71 and AcNAC72, which were presented on unanchored scaffolds. Furthermore, we analysed AcNAC expression patterns in vegetative organs and in sexual organs, namely ovules and stamens, at different developmental stages respectively. Five AcNAC genes (AcNAC6; AcNAC7; AcNAC48; AcNAC70; AcNAC71) were not detected in vegetative organs. AcNAC55 exhibited the highest expression level in vegetative organs. Six AcNAC genes (AcNAC11, AcNAC18, AcNAC27, AcNAC28, AcNAC40, and AcNAC55) showed high expression levels in all reproductive organs. Seven AcNAC genes (AcNAC26, AcNAC34, AcNAC40, AcNAC43, AcNAC63 and AcNAC65) were induced under abiotic stresses. These data provided a new insight of NAC gene family in pineapple and revealed the diverse function of NAC transcription factors in pineapple growth and development.

Journal

Tropical Plant BiologySpringer Journals

Published: May 27, 2019

References