Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Genetic Diversity and Population Structure of Broomcorn Sorghum Investigated with Simple Sequence Repeat Markers

Genetic Diversity and Population Structure of Broomcorn Sorghum Investigated with Simple Sequence... In order to study the genetic diversity and population structure of broomcorn, a special type of sorghum for broom making, a total of 140 accessions of sorghum varieties including broomcorn (72), half-broomcorn (4), non-broomcorn (64) accessions were genotyped by using 45 simple sequence repeat (SSR) markers that are evenly distributed throughout the sorghum genome. These genotyping analyses demonstrated that the average values of NA (number of alleles per locus), PIC (polymorphism information content) and He (genetic diversity/expected heterozygosity) of the broomcorn accessions were 9.09, 0.60 and 0.63, respectively, which were higher than that of the half-broomcorn accessions (NA, 2.64; PIC, 0.46; He, 0.52) but lower than that of the non-broomcorn accessions (NA, 11.69; PIC, 0.73; He, 0.75). These results implied that the genetic diversity of broomcorn is not as abundant as that of non-broomcorn, and the genetic diversity level of broomcorn is relatively rich. Moreover, the STRUCTURE analysis, phylogenetic analysis and principle coordinate analysis (PCoA) indicated that most of broomcorn collections from Ethiopia (Africa) and Turkey (West Asia) were clustered into one group whereas a majority of broomcorn accessions from East Asia (China, South Korea) were grouped into another group. Two broomcorn individuals from Africa (Sudan) belonged to another distinctive group. These results suggest that broomcorn possesses a wide genetic background and can be divided into three types of differentiation. The information of this study is useful for the understanding of domesticating history and broomcorn differentiations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tropical Plant Biology Springer Journals

Genetic Diversity and Population Structure of Broomcorn Sorghum Investigated with Simple Sequence Repeat Markers

Loading next page...
 
/lp/springer-journals/genetic-diversity-and-population-structure-of-broomcorn-sorghum-M17M382i4v

References (48)

Publisher
Springer Journals
Copyright
Copyright © Springer Science+Business Media, LLC, part of Springer Nature 2020
Subject
Life Sciences; Plant Sciences; Plant Genetics and Genomics; Plant Breeding/Biotechnology; Plant Ecology; Transgenics
ISSN
1935-9756
eISSN
1935-9764
DOI
10.1007/s12042-019-09251-1
Publisher site
See Article on Publisher Site

Abstract

In order to study the genetic diversity and population structure of broomcorn, a special type of sorghum for broom making, a total of 140 accessions of sorghum varieties including broomcorn (72), half-broomcorn (4), non-broomcorn (64) accessions were genotyped by using 45 simple sequence repeat (SSR) markers that are evenly distributed throughout the sorghum genome. These genotyping analyses demonstrated that the average values of NA (number of alleles per locus), PIC (polymorphism information content) and He (genetic diversity/expected heterozygosity) of the broomcorn accessions were 9.09, 0.60 and 0.63, respectively, which were higher than that of the half-broomcorn accessions (NA, 2.64; PIC, 0.46; He, 0.52) but lower than that of the non-broomcorn accessions (NA, 11.69; PIC, 0.73; He, 0.75). These results implied that the genetic diversity of broomcorn is not as abundant as that of non-broomcorn, and the genetic diversity level of broomcorn is relatively rich. Moreover, the STRUCTURE analysis, phylogenetic analysis and principle coordinate analysis (PCoA) indicated that most of broomcorn collections from Ethiopia (Africa) and Turkey (West Asia) were clustered into one group whereas a majority of broomcorn accessions from East Asia (China, South Korea) were grouped into another group. Two broomcorn individuals from Africa (Sudan) belonged to another distinctive group. These results suggest that broomcorn possesses a wide genetic background and can be divided into three types of differentiation. The information of this study is useful for the understanding of domesticating history and broomcorn differentiations.

Journal

Tropical Plant BiologySpringer Journals

Published: Mar 2, 2020

There are no references for this article.