Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Generation of electric potential difference across the electrodes of the microbial fuel cell in the anaerobic oxidation of substrates by microbial associations

Generation of electric potential difference across the electrodes of the microbial fuel cell in... Several microbial associations were obtained from natural and anthropogenic sources. All of the associations grow well on glucose and significantly worse on acetate. We observed 80–95% glucose consumption during 3–5 days of growth. The oxidation of substrates by the cultures generates an electric potential difference between anode and cathode electrodes of a microbial fuel cell (MFC). The value of the potential difference depends on the nature of the association and the substrate and reaches 400–500 mV. The potential difference generation accompanied by a shift to the negative region of the medium redox potential (E h ) to — (400–500) mV. This indicates H2 evolution by the association cultures during oxidation of carbohydrates. Artificial redox mediators, such as tetramethyl-p-phenylenediamine, phenazine methosulfate, and benzyl viologen, were able to increase up to 15% the difference in electrical potential across the electrodes of the MFC. It is assumed that an increase in the potential difference across the electrodes induced by the redox mediators is due to their direct involvement in the transfer of electrons from the bacteria in the incubation medium to the MFC anode electrode. The direct measurement of current and potential difference on the electrodes in a short-circuit mode shows that the internal resistance of the MFC is equal to 1 kΩ and the power reaches 5 μW. Undoubtedly, this testifies to the low efficiency developed by the MFE. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Moscow University Biological Sciences Bulletin Springer Journals

Generation of electric potential difference across the electrodes of the microbial fuel cell in the anaerobic oxidation of substrates by microbial associations

Loading next page...
 
/lp/springer-journals/generation-of-electric-potential-difference-across-the-electrodes-of-h3QorpOR4f

References (13)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Allerton Press, Inc.
Subject
Life Sciences; Biochemistry, general; Cell Biology; Life Sciences, general; Plant Sciences; Zoology
ISSN
0096-3925
eISSN
1934-791X
DOI
10.3103/S009639251403002X
Publisher site
See Article on Publisher Site

Abstract

Several microbial associations were obtained from natural and anthropogenic sources. All of the associations grow well on glucose and significantly worse on acetate. We observed 80–95% glucose consumption during 3–5 days of growth. The oxidation of substrates by the cultures generates an electric potential difference between anode and cathode electrodes of a microbial fuel cell (MFC). The value of the potential difference depends on the nature of the association and the substrate and reaches 400–500 mV. The potential difference generation accompanied by a shift to the negative region of the medium redox potential (E h ) to — (400–500) mV. This indicates H2 evolution by the association cultures during oxidation of carbohydrates. Artificial redox mediators, such as tetramethyl-p-phenylenediamine, phenazine methosulfate, and benzyl viologen, were able to increase up to 15% the difference in electrical potential across the electrodes of the MFC. It is assumed that an increase in the potential difference across the electrodes induced by the redox mediators is due to their direct involvement in the transfer of electrons from the bacteria in the incubation medium to the MFC anode electrode. The direct measurement of current and potential difference on the electrodes in a short-circuit mode shows that the internal resistance of the MFC is equal to 1 kΩ and the power reaches 5 μW. Undoubtedly, this testifies to the low efficiency developed by the MFE.

Journal

Moscow University Biological Sciences BulletinSpringer Journals

Published: Sep 24, 2014

There are no references for this article.