Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Generating capacity adequacy evaluation of large-scale, grid-connected photovoltaic systems

Generating capacity adequacy evaluation of large-scale, grid-connected photovoltaic systems Abstract Large-scale, grid-connected photovoltaic systems have become an essential part of modern electric power distribution systems. In this paper, a novel approach based on the Markov method has been proposed to investigate the effects of large-scale, grid-connected photovoltaic systems on the reliability of bulk power systems. The proposed method serves as an applicable tool to estimate performance (e.g., energy yield and capacity) as well as reliability indices. The Markov method framework has been incorporated with the multi-state models to develop energy states of the photovoltaic systems in order to quantify the effects of the photovoltaic systems on the power system adequacy. Such analysis assists planners to make adequate decisions based on the economical expectations as well as to ensure the recovery of the investment costs over time. The failure states of the components of photovoltaic systems have been considered to evaluate the sensitivity analysis and the adequacy indices including loss of load expectation, and expected energy not supplied. Moreover, the impacts of transitions between failures on the reliability calculations as well as on the long- term operation of the photovoltaic systems have been illustrated. Simulation results on the Roy Billinton test system has been shown to illustrate the procedure of the proposed frame work and evaluate the reliability benefits of using large-scale, grid-connected photovoltaic system on the bulk electric power systems. The proposed method can be easily extended to estimate the operating and maintenance costs for the financial planning of the photovoltaic system projects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Frontiers in Energy" Springer Journals

Generating capacity adequacy evaluation of large-scale, grid-connected photovoltaic systems

Loading next page...
 
/lp/springer-journals/generating-capacity-adequacy-evaluation-of-large-scale-grid-connected-7Bw1KiMe2K

References (38)

Publisher
Springer Journals
Copyright
2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
ISSN
2095-1701
eISSN
2095-1698
DOI
10.1007/s11708-016-0415-9
Publisher site
See Article on Publisher Site

Abstract

Abstract Large-scale, grid-connected photovoltaic systems have become an essential part of modern electric power distribution systems. In this paper, a novel approach based on the Markov method has been proposed to investigate the effects of large-scale, grid-connected photovoltaic systems on the reliability of bulk power systems. The proposed method serves as an applicable tool to estimate performance (e.g., energy yield and capacity) as well as reliability indices. The Markov method framework has been incorporated with the multi-state models to develop energy states of the photovoltaic systems in order to quantify the effects of the photovoltaic systems on the power system adequacy. Such analysis assists planners to make adequate decisions based on the economical expectations as well as to ensure the recovery of the investment costs over time. The failure states of the components of photovoltaic systems have been considered to evaluate the sensitivity analysis and the adequacy indices including loss of load expectation, and expected energy not supplied. Moreover, the impacts of transitions between failures on the reliability calculations as well as on the long- term operation of the photovoltaic systems have been illustrated. Simulation results on the Roy Billinton test system has been shown to illustrate the procedure of the proposed frame work and evaluate the reliability benefits of using large-scale, grid-connected photovoltaic system on the bulk electric power systems. The proposed method can be easily extended to estimate the operating and maintenance costs for the financial planning of the photovoltaic system projects.

Journal

"Frontiers in Energy"Springer Journals

Published: Sep 1, 2016

There are no references for this article.