Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Generalization of Lax equivalence theorem on unbounded self-adjoint operators with applications to Schrödinger operators

Generalization of Lax equivalence theorem on unbounded self-adjoint operators with applications... Define A a unbounded self-adjoint operator on Hilbert space X. Let {An}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \{ A_n \} $$\end{document} be its resolvent approximation sequence with closed range R(An)(n∈N)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ {\mathcal {R}}(A_n) (n \in \mathrm {N}) $$\end{document}, that is, An(n∈N)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ A_n (n \in \mathrm {N}) $$\end{document} are all self-adjoint on Hilbert space X and s-limn→∞Rλ(An)=Rλ(A)(λ∈C\R),whereRλ(A):=(λI-A)-1.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \mathop {s-\lim }\limits _{n \rightarrow \infty } R_\lambda (A_n) = R_\lambda (A)\quad (\lambda \in \mathrm {C} \setminus \mathrm {R}), \ \text {where} \ R_ \lambda (A) := (\lambda I-A)^{-1}. \end{aligned}$$\end{document}The Moore–Penrose inverse An†∈B(X)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ A^\dagger _n \in {\mathcal {B}}(X) $$\end{document} is a natural approximation to the Moore–Penrose inverse A†\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ A^\dagger $$\end{document}. This paper shows that: A†\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ A^\dagger $$\end{document} is continuous and strongly converged by {An†}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \{ A^\dagger _n \} $$\end{document} if and only if supn‖An†‖<+∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \sup \nolimits _n \Vert A^\dagger _n \Vert < +\infty $$\end{document}. On the other hand, this result tells that arbitrary bounded computational scheme {An†}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \{ A^\dagger _n \} $$\end{document} induced by resolvent approximation {An}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \{ A_n \} $$\end{document} is naturally instable (that is, supn‖An†‖=∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \sup _n \Vert A^\dagger _n \Vert = \infty $$\end{document}) for any self-adjoint operator equation with non-closed range, for example, free Schrödinger operator, Schrödinger operator with Coulomb potential and Schrödinger operator in model of many particles. This implies the infeasibility to globally and approximately solve non-closed range self-adjoint operator equation by resolvent approximation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Functional Analysis Springer Journals

Generalization of Lax equivalence theorem on unbounded self-adjoint operators with applications to Schrödinger operators

Annals of Functional Analysis , Volume 11 (3) – Jul 1, 2020

Loading next page...
 
/lp/springer-journals/generalization-of-lax-equivalence-theorem-on-unbounded-self-adjoint-vjZZm0HUX6

References (18)

Publisher
Springer Journals
Copyright
Copyright © Tusi Mathematical Research Group (TMRG) 2019
ISSN
2639-7390
eISSN
2008-8752
DOI
10.1007/s43034-019-00032-1
Publisher site
See Article on Publisher Site

Abstract

Define A a unbounded self-adjoint operator on Hilbert space X. Let {An}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \{ A_n \} $$\end{document} be its resolvent approximation sequence with closed range R(An)(n∈N)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ {\mathcal {R}}(A_n) (n \in \mathrm {N}) $$\end{document}, that is, An(n∈N)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ A_n (n \in \mathrm {N}) $$\end{document} are all self-adjoint on Hilbert space X and s-limn→∞Rλ(An)=Rλ(A)(λ∈C\R),whereRλ(A):=(λI-A)-1.\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \mathop {s-\lim }\limits _{n \rightarrow \infty } R_\lambda (A_n) = R_\lambda (A)\quad (\lambda \in \mathrm {C} \setminus \mathrm {R}), \ \text {where} \ R_ \lambda (A) := (\lambda I-A)^{-1}. \end{aligned}$$\end{document}The Moore–Penrose inverse An†∈B(X)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ A^\dagger _n \in {\mathcal {B}}(X) $$\end{document} is a natural approximation to the Moore–Penrose inverse A†\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ A^\dagger $$\end{document}. This paper shows that: A†\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ A^\dagger $$\end{document} is continuous and strongly converged by {An†}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \{ A^\dagger _n \} $$\end{document} if and only if supn‖An†‖<+∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \sup \nolimits _n \Vert A^\dagger _n \Vert < +\infty $$\end{document}. On the other hand, this result tells that arbitrary bounded computational scheme {An†}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \{ A^\dagger _n \} $$\end{document} induced by resolvent approximation {An}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \{ A_n \} $$\end{document} is naturally instable (that is, supn‖An†‖=∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \sup _n \Vert A^\dagger _n \Vert = \infty $$\end{document}) for any self-adjoint operator equation with non-closed range, for example, free Schrödinger operator, Schrödinger operator with Coulomb potential and Schrödinger operator in model of many particles. This implies the infeasibility to globally and approximately solve non-closed range self-adjoint operator equation by resolvent approximation.

Journal

Annals of Functional AnalysisSpringer Journals

Published: Jul 1, 2020

There are no references for this article.