Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeBlood vessel segmentation is the most important step for detecting changes in retinal vascular structures in retinal images. While these images are widely used in clinical diagnosis, they are generally degraded by noise and are limited by low contrast. In this paper, we address the problem of improving fundus image quality for blood vessel detection.MethodsWe used contrast limited adaptive histogram equalization (CLAHE) to improve contrast and the Wiener filter for noise reduction. A multilayer artificial neural network was used to optimize the values from CLAHE and the Wiener filter for blood vessel segmentation. Furthermore, several training and classification rounds were performed (3240, with 200 epochs each), using a combination of CLAHE and Wiener parameters and a fixed network configuration.ResultsThe proposed methodology was tested in the DRIVE database, achieving accuracy, sensitivity, and specificity values of 0.9505, 0.7564, and 0.9696, respectively.ConclusionThe results were encouraging for almost all metrics and comparable to those of state-of-the-art blood vessel segmentation processes. Therefore, the parameter set effectively improved the fundus image quality for blood vessel segmentation, relative to the classification. These results are important since the more precise the segmentation step is, the greater the chances are of building a robust and specialized diagnostic system.
Research on Biomedical Engineering – Springer Journals
Published: Jun 11, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.