Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

From the design of bottom landfill liner systems to the impact assessment of contaminants on underlying aquifers

From the design of bottom landfill liner systems to the impact assessment of contaminants on... The most recent advancements of the research activity that has been carried out at the Polytechnic University of Turin since the 1990s are presented, with a focus on the design approaches which can be adopted for the optimisation of the engineered clay barriers that are used as a part of the composite liners of solid waste landfills. A particular attention is devoted to the characterisation of the geosynthetic clay liners (GCLs) in terms of their microstructural features and semipermeable properties, which affect both the liquid and contaminant transport and the swelling–shrinking behaviour upon a variation in the chemical and mechanical boundary conditions. In the first part of the paper, novel analytical solutions are derived in order to account for the influence of the chemico-osmotic counter-flow on the leakage rate through a lining system that consists of a geomembrane (GM) overlying a GCL, as well as for the effect of a variation in the GCL swelling pressure on the hydraulic transmissivity of the GM–GCL interface. In the second part of the paper, a steady-state analysis approach is proposed with the aim to include all the aforementioned phenomena in the assessment of the impact of contaminant migration through the landfill bottom liners on the groundwater quality, taking into account the presence of a natural attenuation layer between the GCL and the underlying aquifer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Innovative Infrastructure Solutions Springer Journals

From the design of bottom landfill liner systems to the impact assessment of contaminants on underlying aquifers

Loading next page...
 
/lp/springer-journals/from-the-design-of-bottom-landfill-liner-systems-to-the-impact-0iIm9EJsOP
Publisher
Springer Journals
Copyright
Copyright © 2019 by Springer Nature Switzerland AG
Subject
Earth Sciences; Geotechnical Engineering & Applied Earth Sciences; Environmental Science and Engineering; Geoengineering, Foundations, Hydraulics
ISSN
2364-4176
eISSN
2364-4184
DOI
10.1007/s41062-019-0251-y
Publisher site
See Article on Publisher Site

Abstract

The most recent advancements of the research activity that has been carried out at the Polytechnic University of Turin since the 1990s are presented, with a focus on the design approaches which can be adopted for the optimisation of the engineered clay barriers that are used as a part of the composite liners of solid waste landfills. A particular attention is devoted to the characterisation of the geosynthetic clay liners (GCLs) in terms of their microstructural features and semipermeable properties, which affect both the liquid and contaminant transport and the swelling–shrinking behaviour upon a variation in the chemical and mechanical boundary conditions. In the first part of the paper, novel analytical solutions are derived in order to account for the influence of the chemico-osmotic counter-flow on the leakage rate through a lining system that consists of a geomembrane (GM) overlying a GCL, as well as for the effect of a variation in the GCL swelling pressure on the hydraulic transmissivity of the GM–GCL interface. In the second part of the paper, a steady-state analysis approach is proposed with the aim to include all the aforementioned phenomena in the assessment of the impact of contaminant migration through the landfill bottom liners on the groundwater quality, taking into account the presence of a natural attenuation layer between the GCL and the underlying aquifer.

Journal

Innovative Infrastructure SolutionsSpringer Journals

Published: Nov 25, 2019

References