Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Floral Color Polymorphism and Reproductive Success in Annatto (Bixa orellana L.)

Floral Color Polymorphism and Reproductive Success in Annatto (Bixa orellana L.) Floral color polymorphism of annatto (Bixa orellana L.) offers a wide range of colors that are maintained in the population by either pollinators or non pollinator agents of selection. In the present study, maintenance of different floral colors was analyzed in relation to reproductive success of Bixa orellana. The different floral petal colors (white, amaranth rose, petunia purple or cobalt violet) were determined from selected plants with reflectance spectrophotometry. Phenotypic measures of other floral traits, female reproductive success, seed set, seed output and seed weight also revealed variation between different floral morphs. Records on seed set varied significantly for different floral color morphs. Maximum fruit maturation (58 %) was observed in amaranth rose and least fruit maturation (25 %) in the white morph. Seed set data indicates pollinators’ preference for more intensely colored flowers. This preference may be due to ability of the pollinators to distinguish the morphs through differentially reduced sensitivity at the green wavelengths. In flowers which received fewer insect visits, polymorphism might be maintained by self fertilization. The color morphs showed differences in Random Amplified Polymorphic DNA (RAPD) profile indicating a genetic basis for floral color variation and consequent differences in seed set. Out of 88 bands generated with nine operon primers, 70 were polymorphic. The present study provides valuable information on the influence of petal color on maternal fitness in B. orellana. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tropical Plant Biology Springer Journals

Floral Color Polymorphism and Reproductive Success in Annatto (Bixa orellana L.)

Tropical Plant Biology , Volume 6 (4) – Aug 9, 2013

Loading next page...
 
/lp/springer-journals/floral-color-polymorphism-and-reproductive-success-in-annatto-bixa-P6LMindEIu

References (44)

Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Plant Sciences; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Plant Ecology; Transgenics
ISSN
1935-9756
eISSN
1935-9764
DOI
10.1007/s12042-013-9128-y
Publisher site
See Article on Publisher Site

Abstract

Floral color polymorphism of annatto (Bixa orellana L.) offers a wide range of colors that are maintained in the population by either pollinators or non pollinator agents of selection. In the present study, maintenance of different floral colors was analyzed in relation to reproductive success of Bixa orellana. The different floral petal colors (white, amaranth rose, petunia purple or cobalt violet) were determined from selected plants with reflectance spectrophotometry. Phenotypic measures of other floral traits, female reproductive success, seed set, seed output and seed weight also revealed variation between different floral morphs. Records on seed set varied significantly for different floral color morphs. Maximum fruit maturation (58 %) was observed in amaranth rose and least fruit maturation (25 %) in the white morph. Seed set data indicates pollinators’ preference for more intensely colored flowers. This preference may be due to ability of the pollinators to distinguish the morphs through differentially reduced sensitivity at the green wavelengths. In flowers which received fewer insect visits, polymorphism might be maintained by self fertilization. The color morphs showed differences in Random Amplified Polymorphic DNA (RAPD) profile indicating a genetic basis for floral color variation and consequent differences in seed set. Out of 88 bands generated with nine operon primers, 70 were polymorphic. The present study provides valuable information on the influence of petal color on maternal fitness in B. orellana.

Journal

Tropical Plant BiologySpringer Journals

Published: Aug 9, 2013

There are no references for this article.