Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Flexible current collector–free LiFePO4/carbon composite film for high-performance lithium-ion batteries

Flexible current collector–free LiFePO4/carbon composite film for high-performance lithium-ion... A facile formation of free-standing LiFePO4/carbon (LiFePO4/C) composite film with flexibility and current collector–free is presented. This composite film has been prepared via a simple coating process by spreading out slurry onto a hydrophobic surface. Such free-standing film exhibits excellent flexibility and mechanical strength. The mechanical measurements show that the fracture strength and modulus of flexible film are up to 0.65 MPa and 109.6 MPa, respectively. The electrochemical properties of this film have been obtained in a half-cell configuration. The results display that the film delivers an initial discharge capacity of ~ 156 mAh/g at 0.1 C; the charge-discharge efficiency is as high as 98%. Moreover, at 10 C, the specific capacity can be kept at ~ 133 mAh/g, with very little capacity loss after 500 cycles (< 0.02‰ per cycle). The as-prepared flexible film is inexpensive and simple, providing a great potential for the commercialization of high-performance flexible lithium-ion batteries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Flexible current collector–free LiFePO4/carbon composite film for high-performance lithium-ion batteries

Loading next page...
 
/lp/springer-journals/flexible-current-collector-free-lifepo4-carbon-composite-film-for-high-YXHQGjq0FS

References (44)

Publisher
Springer Journals
Copyright
Copyright © 2019 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
DOI
10.1007/s11581-019-02869-x
Publisher site
See Article on Publisher Site

Abstract

A facile formation of free-standing LiFePO4/carbon (LiFePO4/C) composite film with flexibility and current collector–free is presented. This composite film has been prepared via a simple coating process by spreading out slurry onto a hydrophobic surface. Such free-standing film exhibits excellent flexibility and mechanical strength. The mechanical measurements show that the fracture strength and modulus of flexible film are up to 0.65 MPa and 109.6 MPa, respectively. The electrochemical properties of this film have been obtained in a half-cell configuration. The results display that the film delivers an initial discharge capacity of ~ 156 mAh/g at 0.1 C; the charge-discharge efficiency is as high as 98%. Moreover, at 10 C, the specific capacity can be kept at ~ 133 mAh/g, with very little capacity loss after 500 cycles (< 0.02‰ per cycle). The as-prepared flexible film is inexpensive and simple, providing a great potential for the commercialization of high-performance flexible lithium-ion batteries.

Journal

IonicsSpringer Journals

Published: Feb 2, 2019

There are no references for this article.