Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Feeding biology of the pelagic larvae of Marenzelleria cf. viridis (Polychaeta: Spionidae) from the Baltic Sea

Feeding biology of the pelagic larvae of Marenzelleria cf. viridis (Polychaeta: Spionidae) from... Phytoplankton < 20 µm was a principal dietary component of the larvae of Marenzelleria cf. viridis. Maximum ingested particle size increased as animal size increased, reaching a maximum diameter of 80 µm for larvae with 6 to 10 setigers. The larvae started ingesting particulate matter at the 1-setiger stage and were able selectively to ingest phytoplankton and polystyrene particles of various sizes. Larvae in the 6 to 10-setiger size group did not differ from those in the 11 to 17-setiger size group in respect of size selectivity for polystyrene particles. The gut passage time for Chlorella vulgaris was ≥ 20 min. The ingestion rate was limited by food concentrations even at concentrations much higher than those encountered in the natural biotope, saturation being reached at a concentration of 28.5 times 106 cells ml-1 (117.7 mg C l-1. The low maximum filtration rate of only 1.19 µl ind.-1 h-1 indicates that the filtering capacity of the larvae is low. The larvae are still capable of food uptake at 1 °C. Further experiments demonstrated that larval growth and survival were strongly dependent on both food concentration and quality. Larval growth was food-limited under biotope conditions of the Darss–Zingst Boddens and even more so under Baltic Sea conditions. The results indicate that Marenzelleria cf. viridis is a species adapted to eutrophic conditions prevailing in brackish waters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aquatic Ecology Springer Journals

Feeding biology of the pelagic larvae of Marenzelleria cf. viridis (Polychaeta: Spionidae) from the Baltic Sea

Aquatic Ecology , Volume 31 (2) – Sep 28, 2004

Loading next page...
 
/lp/springer-journals/feeding-biology-of-the-pelagic-larvae-of-marenzelleria-cf-viridis-m9mc7AZIo3

References (49)

Publisher
Springer Journals
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Freshwater & Marine Ecology; Ecosystems
ISSN
1386-2588
eISSN
1573-5125
DOI
10.1023/A:1009947320273
Publisher site
See Article on Publisher Site

Abstract

Phytoplankton < 20 µm was a principal dietary component of the larvae of Marenzelleria cf. viridis. Maximum ingested particle size increased as animal size increased, reaching a maximum diameter of 80 µm for larvae with 6 to 10 setigers. The larvae started ingesting particulate matter at the 1-setiger stage and were able selectively to ingest phytoplankton and polystyrene particles of various sizes. Larvae in the 6 to 10-setiger size group did not differ from those in the 11 to 17-setiger size group in respect of size selectivity for polystyrene particles. The gut passage time for Chlorella vulgaris was ≥ 20 min. The ingestion rate was limited by food concentrations even at concentrations much higher than those encountered in the natural biotope, saturation being reached at a concentration of 28.5 times 106 cells ml-1 (117.7 mg C l-1. The low maximum filtration rate of only 1.19 µl ind.-1 h-1 indicates that the filtering capacity of the larvae is low. The larvae are still capable of food uptake at 1 °C. Further experiments demonstrated that larval growth and survival were strongly dependent on both food concentration and quality. Larval growth was food-limited under biotope conditions of the Darss–Zingst Boddens and even more so under Baltic Sea conditions. The results indicate that Marenzelleria cf. viridis is a species adapted to eutrophic conditions prevailing in brackish waters.

Journal

Aquatic EcologySpringer Journals

Published: Sep 28, 2004

There are no references for this article.