Let R be a commutative unital ring. A well-known factorization problem is whether any matrix in $$\mathrm {SL}_n(R)$$ SL n ( R ) is a product of elementary matrices with entries in R. To solve the problem, we use two approaches based on the notion of the Bass stable rank and on construction of a null-homotopy. Special attention is given to the case, where R is a ring or Banach algebra of holomorphic functions. Also, we consider a related problem on representation of a matrix in $$\mathrm {GL}_n(R)$$ GL n ( R ) as a product of exponentials.
Analysis and Mathematical Physics – Springer Journals
Published: Feb 25, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.