Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Fabrication and Characterization of Fe(III) Metal-organic Frameworks Incorporating Polycaprolactone Nanofibers: Potential Scaffolds for Tissue Engineering

Fabrication and Characterization of Fe(III) Metal-organic Frameworks Incorporating... Fabrication of nanofibrous scaffolds of biodegradable polymers provides a great premise for several biological applications. In this study, nanofibrous polycaprolactone (PCL) mats incorporating Fe-MOF (PCL/x%Fe-MOF, x=5, 10, 20) were fabricated by electrospinning technique. The Fe-MOFs were separately synthesized by the hydrothermal method and then were added to PCL solution for preparation of nanofibrous composites. The presence of Fe-MOF in the fibers was demonstrated by various methods including FT-IR (Fourier-transform infrared), PXRD (powder X-ray diffraction), EDS (energy dispersive X-ray spectroscopy) mapping, SEM (scanning electron microscope), and TEM (transmission electron microscope). In the FT-IR spectra of the nanocomposites, the characteristic bands for the pure PCL and Fe-MOF showed no significant change in their positions, suggesting a weak chemical interaction with each other, although they physically mixed uniformly. Nanofibrous structure of the as-prepared nanocomposites was confirmed by SEM and TEM images. The diameter of PCL nanofibers was measured to be 369 nm. Biological investigations indicated that the experimented scaffolds including PCL/5%Fe-MOF and PCL/10%Fe-MOF nanofibrous scaffolds provided appropriate surface and mechanical properties such as cellular biocompatibility, high porosity, chemical stability, and optimum fiber diameter for cell adhesion, viability, and proliferation compared with PCL and PCL/20%Fe-MOF nanocomposites. Indeed, our results demonstrated that percent of Fe-MOF in the composites played a significant role in cell attachment and viability. Also, according to the implantation studies, up to at least 4 weeks, none of the animals showed any inflammatory response. Totally, we can be claimed that the modified electrospun scaffolds have been developed for tissue engineering applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Fabrication and Characterization of Fe(III) Metal-organic Frameworks Incorporating Polycaprolactone Nanofibers: Potential Scaffolds for Tissue Engineering

Loading next page...
 
/lp/springer-journals/fabrication-and-characterization-of-fe-iii-metal-organic-frameworks-ShKw0wOjTj

References (61)

Publisher
Springer Journals
Copyright
Copyright © The Korean Fiber Society 2020
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-020-9523-6
Publisher site
See Article on Publisher Site

Abstract

Fabrication of nanofibrous scaffolds of biodegradable polymers provides a great premise for several biological applications. In this study, nanofibrous polycaprolactone (PCL) mats incorporating Fe-MOF (PCL/x%Fe-MOF, x=5, 10, 20) were fabricated by electrospinning technique. The Fe-MOFs were separately synthesized by the hydrothermal method and then were added to PCL solution for preparation of nanofibrous composites. The presence of Fe-MOF in the fibers was demonstrated by various methods including FT-IR (Fourier-transform infrared), PXRD (powder X-ray diffraction), EDS (energy dispersive X-ray spectroscopy) mapping, SEM (scanning electron microscope), and TEM (transmission electron microscope). In the FT-IR spectra of the nanocomposites, the characteristic bands for the pure PCL and Fe-MOF showed no significant change in their positions, suggesting a weak chemical interaction with each other, although they physically mixed uniformly. Nanofibrous structure of the as-prepared nanocomposites was confirmed by SEM and TEM images. The diameter of PCL nanofibers was measured to be 369 nm. Biological investigations indicated that the experimented scaffolds including PCL/5%Fe-MOF and PCL/10%Fe-MOF nanofibrous scaffolds provided appropriate surface and mechanical properties such as cellular biocompatibility, high porosity, chemical stability, and optimum fiber diameter for cell adhesion, viability, and proliferation compared with PCL and PCL/20%Fe-MOF nanocomposites. Indeed, our results demonstrated that percent of Fe-MOF in the composites played a significant role in cell attachment and viability. Also, according to the implantation studies, up to at least 4 weeks, none of the animals showed any inflammatory response. Totally, we can be claimed that the modified electrospun scaffolds have been developed for tissue engineering applications.

Journal

Fibers and PolymersSpringer Journals

Published: May 7, 2020

There are no references for this article.