Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper is concerned with the study of quasi-extremal distance domains, a class of domains introduced by Gehring and Martio in connection with the theory of quasiconformal mappings. We obtain a sharp upper bound for the quasi-extremal distance constant $$M(\Omega )$$ M ( Ω ) of a finitely connected planar domain in terms of local boundary dilatation of its boundary components. For the proof of the main theorem, several independently interesting results are also established. One of them is a decomposition lemma about the extremal length of a curve family.
Computational Methods and Function Theory – Springer Journals
Published: Mar 5, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.