Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Extractive summarisation of legal texts

Extractive summarisation of legal texts We describe research carried out as part of a text summarisation project for the legal domain for which we use a new XML corpus of judgments of the UK House of Lords. These judgments represent a particularly important part of public discourse due to the role that precedents play in English law. We present experimental results using a range of features and machine learning techniques for the task of predicting the rhetorical status of sentences and for the task of selecting the most summary-worthy sentences from a document. Results for these components are encouraging as they achieve state-of-the-art accuracy using robust, automatically generated cue phrase information. Sample output from the system illustrates the potential of summarisation technology for legal information management systems and highlights the utility of our rhetorical annotation scheme as a model of legal discourse, which provides a clear means for structuring summaries and tailoring them to different types of users. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Artificial Intelligence and Law Springer Journals

Extractive summarisation of legal texts

Loading next page...
 
/lp/springer-journals/extractive-summarisation-of-legal-texts-AjEJZmW5fN
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media B.V.
Subject
Computer Science; Artificial Intelligence (incl. Robotics); International IT and Media Law, Intellectual Property Law; Philosophy of Law; Legal Aspects of Computing; Information Storage and Retrieval
ISSN
0924-8463
eISSN
1572-8382
DOI
10.1007/s10506-007-9039-z
Publisher site
See Article on Publisher Site

Abstract

We describe research carried out as part of a text summarisation project for the legal domain for which we use a new XML corpus of judgments of the UK House of Lords. These judgments represent a particularly important part of public discourse due to the role that precedents play in English law. We present experimental results using a range of features and machine learning techniques for the task of predicting the rhetorical status of sentences and for the task of selecting the most summary-worthy sentences from a document. Results for these components are encouraging as they achieve state-of-the-art accuracy using robust, automatically generated cue phrase information. Sample output from the system illustrates the potential of summarisation technology for legal information management systems and highlights the utility of our rhetorical annotation scheme as a model of legal discourse, which provides a clear means for structuring summaries and tailoring them to different types of users.

Journal

Artificial Intelligence and LawSpringer Journals

Published: Mar 8, 2007

References